Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932563

ABSTRACT

The impact of the polymeric matrix on the photophysical characteristics of monomeric dyes responsive to excited-state intramolecular proton transfer (ESIPT) was investigated through UV-Vis absorption as well as steady-state and time-resolved emission spectroscopies. For this purpose, two benzoxazole monomers (M1 and M2) with acryloyl groups at different positions in their molecular structures were employed to facilitate covalent bonding within a styrene chain. Our findings reveal significant variations in their excited-state properties due to the proximity of the acryloyl groups, which affects the energy barrier of the ESIPT reaction, the emission wavelength, and the balance between the normal and tautomeric forms. The experimental results were corroborated through theoretical investigations at the DFT/TDDFT level, specifically using the B3LYP-D3/def2-TZVP methodology. Three notable observations emerged: donor/acceptor groups at the meta/para positions induced electron distribution changes, causing red-shifted emission for M2; in the polymer film, particularly in PM1, intramolecular hydrogen bond deactivation favored N* emission over T* emission; and the zwitterionic character of the T* species. This study underscores the advantages of functionalization in polymers, which can lead to colorless films and prevalent N* or T* emission, and contributes valuable insights into molecular design strategies for tailoring the photophysical properties of polymeric materials.

2.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298739

ABSTRACT

Excited-state chemistry relies on the communication between molecules, making it a crucial aspect of the field. One important question that arises is whether intermolecular communication and its rate can be modified when a molecule is confined. To explore the interaction in such systems, we investigated the ground and excited states of 4'-N,N-diethylaminoflavonol (DEA3HF) in an octa acid-based (OA) confined medium and in ethanolic solution, both in the presence of Rhodamine 6G (R6G). Despite the observed spectral overlap between the flavonol emission and the R6G absorption, as well as the fluorescence quenching of the flavonol in the presence of R6G, the almost constant fluorescence lifetime at different amounts of R6G discards the presence of FRET in the studied systems. Steady-state and time-resolved fluorescence indicate the formation of an emissive complex between the proton transfer dye encapsulated within water-soluble supramolecular host octa acid (DEA3HF@(OA)2) and R6G. A similar result was observed between DEA3HF:R6G in ethanolic solution. The respective Stern-Volmer plots corroborate with these observations, suggesting a static quenching mechanism for both systems.


Subject(s)
Ethers, Cyclic , Rhodamines/chemistry , Spectrum Analysis/methods
3.
Molecules ; 26(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34771137

ABSTRACT

In this study, the interactions of ESIPT fluorescent lipophile-based benzazoles with bovine serum albumin (BSA) were studied and their binding affinity was evaluated. In phosphate-buffered saline (PBS) solution these compounds produce absorption maxima in the UV region and a main fluorescence emission with a large Stokes shift in the blue-green regions due to a proton transfer process in the excited state. The interactions of the benzazoles with BSA were studied using UV-Vis absorption and steady-state fluorescence spectroscopy. The observed spectral quenching of BSA indicates that these compounds could bind to BSA through a strong binding affinity afforded by a static quenching mechanism (Kq~1012 L·mol-1·s-1). The docking simulations indicate that compounds 13 and 16 bind closely to Trp134 in domain I, adopting similar binding poses and interactions. On the other hand, compounds 12, 14, 15, and 17 were bound between domains I and III and did not directly interact with Trp134.


Subject(s)
Benzothiazoles/chemistry , Lipids/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Fluorescence , Molecular Structure , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...