Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasite Immunol ; 45(3): e12971, 2023 03.
Article in English | MEDLINE | ID: mdl-36695719

ABSTRACT

In Central America, infection by Leishmania (Leishmania) infantum chagasi causes visceral leishmaniasis and non-ulcerated cutaneous leishmaniasis (NUCL). This work aimed to evaluate the participation of subpopulations of antigen-presenting cells in skin lesions of patients affected by NUCL through double-staining immunohistochemistry using cellular and intracellular markers. Twenty-three skin biopsies from patients affected by NUCL were used. Histological sections stained by HE were used for histopathological study. Immunohistochemical studies were performed using primary antibodies against Langerhans cells, dermal dendritic cells, T lymphocytes, and the cytokines IL-12, IFN-γ, TNF-α, iNOS, and IL-10. The histopathological lesions were characterized by an inflammatory infiltrate, predominantly lymphohistiocytic, of variable intensity, with a diffuse arrangement associated with epithelioid granulomas and discreet parasitism. Double-staining immunohistochemistry showed higher participation of dendritic cells producing the proinflammatory cytokine IL-12 in relation to the other evaluated cytokines. Activation of the cellular immune response was marked by a higher density of CD8 Tc1-lymphocytes followed by CD4 Th1-lymphocytes producing mainly IFN-γ. The data obtained in the present study suggest that antigen-presenting cells play an important role in the in situ immune response through the production of proinflammatory cytokines, directing the cellular immune response preferentially to the Th1 and Tc1 types in NUCL caused by L. (L.) infantum chagasi.


Subject(s)
Leishmania infantum , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Humans , Cytokines , Antigen-Presenting Cells , Interleukin-12
2.
Infect Immun ; 84(12): 3629-3637, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27736777

ABSTRACT

A genome-wide association study (GWAS) could unravel the complexity of the cell-mediated immunity (CMI) to canine leishmaniasis (CanL). Therefore, we scanned 110,165 single-nucleotide polymorphisms (SNPs), aiming to identify chromosomal regions associated with the leishmanin skin test (LST), lymphocyte proliferation assay (LPA), and cytokine responses to further understand the role played by CMI in the outcome of natural Leishmania infantum infection in 189 dogs. Based on LST and LPA, four CMI profiles were identified (LST-/LPA-, LST+/LPA-, LST-/LPA+, and LST+/LPA+), which were not associated with subclinically infected or diseased dogs. LST+/LPA+ dogs showed increased interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) levels and mild parasitism in the lymph nodes, whereas LST-/LPA+ dogs, in spite of increased IFN-γ, also showed increased interleukin-10 (IL-10) and transforming growth factor ß (TGF-ß) levels and the highest parasite load in lymph nodes. Low T cell proliferation under low parasite load suggested that L. infantum was not able to induce effective CMI in the early stage of infection. Altogether, genetic markers explained 87%, 16%, 15%, 11%, 0%, and 0% of phenotypic variance in TNF-α, TGF-ß, LST, IL-10, IFN-γ, and LPA, respectively. GWAS showed that regions associated with TNF-α include the following genes: IL12RB1, JAK3, CCRL2, CCR2, CCR3, and CXCR6, involved in cytokine and chemokine signaling; regions associated with LST, including COMMD5 and SHARPIN, involved in regulation of NF-κB signaling; and regions associated with IL-10, including LTBP1 and RASGRP3, involved in T regulatory lymphocytes differentiation. These findings pinpoint chromosomic regions related to the cell-mediated response that potentially affect the clinical complexity and the parasite replication in canine L. infantum infection.


Subject(s)
Dog Diseases/parasitology , Gene Expression Regulation/immunology , Genome-Wide Association Study , Immunity, Cellular/physiology , Leishmania infantum , Leishmaniasis, Visceral/veterinary , Animals , Cell Proliferation , Cytokines/genetics , Cytokines/metabolism , Dog Diseases/metabolism , Dogs , Female , Leishmaniasis, Visceral/metabolism , Lymphocytes/physiology , Male , Skin Tests/veterinary
3.
Acta Vet Scand ; 56: 57, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25195062

ABSTRACT

BACKGROUND: There are only a few studies reporting the role of nitric oxide metabolites for controlling macrophage intracellular parasitism, and these are controversial. Therefore, the present study aimed to evaluate the expression of inducible nitric oxide synthase (iNOS) in the lymph nodes and spleen of dogs affected by visceral leishmaniasis through immunohistochemistry and to determine its correlation with tissue parasite burden and serum interferon (IFN)-γ levels. Twenty-eight dogs were selected and assigned to one of two groups, symptomatic (n = 18) and asymptomatic (n = 10), according to clinical status and laboratory evaluation. A negative control group (n = 6) from a non-endemic region for visceral leishmaniasis was included as well. RESULTS: Parasite density (amastigotes/mm2) was similar between clinical groups in the lymph nodes (P = 0.2401) and spleen (P = 0.8869). The density of iNOS⁺ cells was higher in infected dogs compared to controls (P < 0.05), without a significant difference in lymph node (P = 0.3257) and spleen (P = 0.5940) densities between symptomatic and asymptomatic dogs. A positive correlation was found between the number of iNOS⁺ cells in lymph nodes and interferon-γ levels (r = 0.3776; P = 0.0303), and there was a negative correlation between parasites and iNOS⁺ cell densities both in lymph nodes (r = -0.5341; P = 0.0034) and spleen (r = -0.4669; P = 0.0329). CONCLUSION: The negative correlation observed between tissue parasitism and the expression of iNOS may be a reflection of NO acting on the control of parasites.


Subject(s)
Dog Diseases/immunology , Gene Expression Regulation, Enzymologic , Leishmaniasis, Visceral/veterinary , Lymph Nodes/parasitology , Nitric Oxide Synthase Type II/genetics , Spleen/parasitology , Animals , Dog Diseases/parasitology , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Gene Expression Profiling , Immunohistochemistry/veterinary , Interferon-gamma/blood , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Nitric Oxide Synthase Type II/immunology , Nitric Oxide Synthase Type II/metabolism , Spleen/immunology , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...