Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
2.
Front Nutr ; 10: 1297926, 2023.
Article in English | MEDLINE | ID: mdl-38249608

ABSTRACT

Overcoming the challenge of creating thick, tissue-resembling muscle constructs is paramount in the field of cultivated meat production. This study investigates the remarkable potential of random cellulose acetate nanofibers (CAN) as a transformative scaffold for muscle tissue engineering (MTE), specifically in the context of cultivated meat applications. Through a comparative analysis between random and aligned CAN, utilizing C2C12 and H9c2 myoblasts, we unveil the unparalleled capabilities of random CAN in facilitating muscle differentiation, independent of differentiation media, by exploiting the YAP/TAZ-related mechanotransduction pathway. In addition, we have successfully developed a novel process for stacking cell-loaded CAN sheets, enabling the production of a three-dimensional meat product. C2C12 and H9c2 loaded CAN sheets were stacked (up to four layers) to form a ~300-400 µm thick tissue 2 cm in length, organized in a mesh of uniaxial aligned cells. To further demonstrate the effectiveness of this methodology for cultivated meat purposes, we have generated thick and viable constructs using chicken muscle satellite cells (cSCs) and random CAN. This groundbreaking discovery offers a cost-effective and biomimetic solution for cultivating and differentiating muscle cells, forging a crucial link between tissue engineering and the pursuit of sustainable and affordable cultivated meat production.

3.
Mater Sci Eng C Mater Biol Appl ; 118: 111322, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254960

ABSTRACT

In this study we prepared annatto-loaded cellulose acetate nanofiber scaffolds and evaluated both in vitro cytotoxicity and potential for wound healing in a rat model. Annatto extract, which has been used to accelerate wound healing, was added to cellulose acetate polymer and the resulting material was used to produce nanofiber scaffolds via electrospinning. Physicochemical, and thermal evaluation of the resulting nanofiber mats showed that incorporating annatto did not significantly affect the thermal or chemical stability of the polymer. Annatto extract did not demonstrate cytotoxicity in the HET-CAM assay or MTT assay for fibroblast culture. Scanning electron microscopy of the fibroblasts confirmed that cells spread and penetrated into the nanofiber. In vivo experiments confirmed that cellulose acetate retained its biocompatibility when associated with crude annatto extract, and suggested that dose/response modulation occurs between the annatto-functionalized nanofibers and mast cells, indicating the potential of this material for wound healing applications.


Subject(s)
Nanofibers , Animals , Bixaceae , Carotenoids , Cellulose/analogs & derivatives , Plant Extracts/pharmacology , Rats , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...