Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Trop ; 206: 105340, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32092291

ABSTRACT

Rabies still represents a major public health threat and estimated to cause 60,000 human deaths annually, particularly in developing countries. Thus, adequate surveillance based on rapid and reliable rabies diagnosis for both humans and animals is essential. The WHO and OIE recommended gold standard diagnostic technique for rabies is the direct immunofluorescence assay (dFAT). However, dFAT is expensive and requires a high level of expertise. As an alternative, the rapid immunohistochemistry technique is a promise to be a simple and cost effective diagnostic tool for rabies, and can be performed on field conditions prevalent in developing countries. However, no validated commercial conjugate antibody for rabies is available to meet the laboratory demand. Here, we evaluated the polyclonal anti-rabies virus ribonucleoprotein (RNP) IgG antibody for Rabies lyssavirus (RABV) detection by indirect rapid immunohistochemistry test (iRIT). We tested polyclonal anti-RNP IgG antibody against a batch of 100 brain specimens representing a wide phylogenetic origin in the State of São Paulo, Brazil. The purified IgG obtained 100% of diagnostic specificity and sensibility for RABV antigen detection in iRIT compared with the gold standard dFAT. In conclusion, our results demonstrate that the polyclonal anti-RNP IgG antibody may be used as a diagnostic reagent for rabies using iRIT, with the expectation of increase in availability and cost reduction of the epidemiological surveillance for developing countries.


Subject(s)
Antibodies, Viral/immunology , Immunoglobulin G/immunology , Immunohistochemistry/methods , Rabies virus/immunology , Rabies/diagnosis , Ribonucleoproteins/immunology , Animals , Fluorescent Antibody Technique, Direct , Humans
2.
Article in English | MEDLINE | ID: mdl-26635873

ABSTRACT

BACKGROUND: Rabies is an incurable neglected zoonosis with worldwide distribution characterized as a lethal progressive acute encephalitis caused by a lyssavirus. Animal venoms and secretions have long been studied as new bioactive molecular sources, presenting a wide spectrum of biological effects, including new antiviral agents. Bufotenine, for instance, is an alkaloid isolated from the skin secretion of the anuran Rhinella jimi that inhibits cellular penetration by the rabies virus. Antimicrobial peptides, such as ocellatin-P1 and ocellatin-F1, are present in the skin secretion of anurans from the genus Leptodactylus and provide chemical defense against predators and microorganisms. METHODS: Skin secretion from captive Leptodactylus labyrinthicus was collected by mechanical stimulation, analyzed by liquid chromatography and mass spectrometry, and assayed for antiviral and cytotoxic activities. Synthetic peptides were obtained using solid phase peptide synthesis, purified by liquid chromatography and structurally characterized by mass spectrometry, and assayed in the same models. Cytotoxicity assays based on changes in cellular morphology were performed using baby hamster kidney (BHK-21) cells. Fixed Rabies virus (Pasteur Virus - PV) strain was used for virological assays based on rapid fluorescent focus inhibition test. RESULTS: Herein, we describe a synergic effect between ocellatin-F1 and bufotenine. This synergism was observed when screening the L. labyrinthicus skin secretion for antiviral activities. The active fraction major component was the antimicrobial peptide ocellatin-F1. Nevertheless, when the pure synthetic peptide was assayed, little antiviral activity was detectable. In-depth analyses of the active fraction revealed the presence of residual alkaloids together with ocellatin-F1. By adding sub-effective doses (e.g. < IC50) of pure bufotenine to synthetic ocellatin-F1, the antiviral effect was regained. Moreover, a tetrapetide derived from ocellatin-F1, based on alignment with the virus's glycoprotein region inferred as a possible cell ligand, was able to maintain the synergic antiviral activity displayed by the full peptide. CONCLUSIONS: This novel antiviral synergic effect between a peptide and an alkaloid may present an innovative lead for the study of new antiviral drugs.

3.
Article in English | MEDLINE | ID: mdl-25337122

ABSTRACT

BACKGROUND: Rabies is a fatal zoonotic neglected disease that occurs in more than 150 countries, and kills more than 55.000 people every year. It is caused by an enveloped single stranded RNA virus that affects the central nervous system, through an infection initiated by the muscular nicotinic acetylcholine receptor, according to many authors. Alkaloids, such as acetylcholine, are widespread molecules in nature. They are present in numerous biological fluids, including the skin secretion of many amphibians, in which they act (together with proteins, peptides and steroids) as protection agents against predators and/or microorganisms. Among those amphibians that are rich in alkaloids, there is the genus Rhinella. METHODS: Bufotenine was isolated from Rhinela jimi skin secretion after a liquid-liquid partition (H2O:CH2Cl2) and reversed phase high-performance liquid chromatography analyses (RP-HPLC). Bufotenine was also extracted from seeds of Anadenanthera colubrina in acetone solution and purified by RP-HPLC, as well. Structural characterization was performed by mass spectrometry and nuclear magnetic resonance analyses. Cytotoxic tests of bufotenine were performed over baby hamster kidney (BHK-21) cells using MTT test. For the antiviral activity, Rabies virus strain Pasteur vaccine (PV) was used on fluorescence inhibition test and fluorescent foci inhibition test, with both simultaneous and time course treatment of the cells with the virus and bufotenine. RESULTS: In the present work we describe the effects of bufotenine, obtained either from toads or plants, that can inhibit the penetration of rabies virus in mammalian cells through an apparent competitive mechanism by the nicotinic acetylcholine receptor. Moreover, this inhibition was dose- and time-dependent, pointing out to a specific mechanism of action. CONCLUSIONS: This work do not present or propose bufotenine as a drug for the treatment of rabies due to the hallucinogen and psychotropic effects of the molecule. However, continued studies in the elucidation of the antiviral mechanism of this molecule, may lead to the choice or development of a tryptamine analogue presenting potential clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...