Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(10): 6893-6901, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748603

ABSTRACT

Cocos nucifera L. is a palm tree (Arecaceae) with a high economic value. The coconut husk fibers are nonedible, thick, and abrasion-resistant and correspond up to 85% of biomass discarded as solid waste residue. Therefore, the husk fibers are an underexploited byproduct with a high content of extractives of unreported nature. Two varieties of C. nucifera L. husk extracts were investigated to uncover bioactive metabolites and their possible application as a green corrosion inhibitor for carbon steel AISI 1020 under neutral pH conditions. The chemical analysis indicated 3% (w/w) of proanthocyanidins in the husk fibers with a high B-type procyanidin content. The husk fibers' crude extract showed promising results as an eco-friendly corrosion inhibitor for carbon steel AISI 1020 under neutral pH conditions. Although it formed a film on the metal surface in all tested concentrations (0.4, 0.8, 1.2, and 1.6 g L-1), the highest protective efficiency was shown at a concentration of 1.2 g L-1, determined by electrochemical techniques and mass loss. This was the first comprehensive report on coconut husk fibers' chemical composition, which was similar between the two varieties with potential for industrial application.

2.
Phytochem Anal ; 30(2): 132-138, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30328225

ABSTRACT

INTRODUCTION: Molecular networks are now established as the method of choice for tandem mass spectrometry dereplication and similarity-based structure elucidation. Node identification can be used to start the propagation of the structure elucidation of unknown compounds progressively. OBJECTIVE: To demonstrate the capabilities of using the LipidXplorer data results along with molecular networking to identify nodes and aid sequential structure elucidation of unknown compounds. MATERIAL AND METHODS: Molecular fragmentation query language (MFQL) files were written to identify glycoalkaloids based on known structures described for Solanum species. A dataset generated from liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis of Solanum pseudoquina sample were submitted to dereplication on both LipidXplorer software and Global Natural Products Social Molecular Network (GNPS) online system. The resulting attribute table from GNPS calculations was merged with the LipidXplorer results and this merged file was used for network visualisation in Cytoscape. Nodes in the molecular network were labelled using the LipidXplorer identifiers, thus assisting the structure elucidation of unidentified compounds. RESULTS: The combination of the LipidXplorer glycoalkaloids list and GNPS analysis was used in Cytoscape to label nodes in the molecular network. The analysis of the network using these labelled starting points triggered the structure elucidation of closely related nodes leading to the identification of 30 compounds using the LipidXplorer output and four purified and structure elucidated compounds, including a new glycoalkaloids identified as 3-O-(ß-d-xylopyranosyl)-(20R,25S)-22,26-epimino-16-acetyl-cholesta-5,22(N)-diene. CONCLUSION: A significant compound identification completely based on molecular formula and fragmentation queries was achieved. This new and effective approach could help researches to expand the identification rate of compounds in dereplication studies using molecular networks.


Subject(s)
Alkaloids/chemistry , Databases, Factual , Lipids/chemistry , Solanum/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Chromatography, Liquid/methods , Molecular Structure , Proof of Concept Study , Proton Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry/methods
3.
Biomed Pharmacother ; 110: 129-138, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30466002

ABSTRACT

BACKGROUND/AIM: Solanum paniculatum L. (Solanaceae) is a plant native to South America where it is used in traditional medicine for different therapeutic indications. This study evaluated the chemical composition and the hepatoprotective and analgesic activities of S. paniculatum leaf extracts. MATERIAL AND METHODS: The chemical profile of an ethyl acetate partition (SPOE) of a S. paniculatum leaf infusion (SPAE) was analysed by high performance liquid chromatography coupled to high-resolution electrospray mass spectrometry (HPLC-ESIMS). Liver protective effects of SPAE (600 and 1200 mg/kg bw, po), or SPOE (300 mg/kg bw, po) were evaluated in a C57BL/6 mouse model of acetaminophen (AP, 600 mg/kg bw, ip) hepatotoxicity by measuring alanine (ALT) and aspartate (AST) aminotransferase activity in the serum, and reduced glutathione (GSH), and thiobarbituric acid reactive species (TBARs) levels in the hepatic tissue. RESULTS: HPLC-ESIMS analysis of the SPOE fraction tentatively identified 35 flavonoids, esters of hydroxycinnamic acid and isomers of chlorogenic acid. SPAE (600 and 1200 mg/kg bw) and SPOE (300 mg/kg bw) antagonized the rise in ALT and AST, and the depletion of GSH, and elevation of TBARs levels in the liver caused by AP. The liver protective effects of SPOE (300 mg/kg bw) against AP-induced liver toxicity mimicked those of N-acetyl-cysteine (NAC 300 or 600 mg/kg bw ip). The mouse writhing assay showed that SPOE (300 mg/kg bw po) has anti-nociceptive effects comparable to those of AP (180 mg/kg bw po). CONCLUSION: This study suggests that an extract of S. paniculatum leaves (SPOE), rich in phenolic compounds, is a promising herbal drug to prevent and treat AP poisoning and presents analgesic properties as well.


Subject(s)
Analgesics/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Plant Extracts/pharmacology , Plant Leaves , Solanum , Acetaminophen/toxicity , Analgesics/isolation & purification , Analgesics/therapeutic use , Analgesics, Non-Narcotic/toxicity , Animals , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Pain Measurement/methods , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use
4.
Pharm Biol ; 55(1): 1380-1388, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28317465

ABSTRACT

CONTEXT: Ocimum basilicum L. (Lamiaceae) has been used in folk medicine to treat headaches, kidney disorders, and intestinal worms. OBJECTIVE: This study evaluates the anti-cryptococcal activity of ethanol crude extract and hexane fraction obtained from O. basilicum var. Maria Bonita leaves. MATERIALS AND METHODS: The MIC values for Cryptococcus sp. were obtained according to Clinical and Laboratory Standards Institute in a range of 0.3-2500 µg/mL. The checkerboard assay evaluated the association of the substances tested (in a range of 0.099-2500 µg/mL) with amphotericin B and O. basilicum essential oil for 48 h. The ethanol extract, hexane fraction and associations in a range of 0.3-2500 µg/mL were tested for pigmentation inhibition after 7 days of treatment. The inhibition of ergosterol synthesis and reduction of capsule size were evaluated after the treatment with ethanol extract (312 µg/mL), hexane fraction (78 µg/mL) and the combinations of essential oil + ethanol extract (78 µg/mL + 19.5 µg/mL, respectively) and essential oil + hexane fraction (39.36 µg/mL + 10 µg/mL, respectively) for 24 and 48 h, respectively. RESULTS: The hexane fraction presented better results than the ethanol extract, with a low MIC (156 µg/mL against C. neoformans T444 and 312 µg/mL against C. neoformans H99 serotype A and C. gattii WM779 serotype C). The combination of the ethanol extract and hexane fraction with amphotericin B and essential oil enhanced their antifungal activity, reducing the concentration of each substance needed to kill 100% of the inoculum. The substances tested were able to reduce the pigmentation, capsule size and ergosterol synthesis, which suggest they have important mechanisms of action. CONCLUSIONS: These results provide further support for the use of ethanol extracts of O. basilicum as a potential source of antifungal agents.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Ethanol/chemistry , Hexanes/chemistry , Ocimum basilicum/chemistry , Plant Extracts/pharmacology , Plant Oils/pharmacology , Solvents/chemistry , Animals , Antifungal Agents/isolation & purification , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/metabolism , Drug Synergism , Ergosterol/biosynthesis , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Ocimum , Phytotherapy , Pigmentation/drug effects , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Oils/isolation & purification , Plants, Medicinal , RAW 264.7 Cells , Time Factors
5.
PLoS One ; 10(12): e0143721, 2015.
Article in English | MEDLINE | ID: mdl-26630290

ABSTRACT

The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG), hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase) and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis.


Subject(s)
Cholesterol/metabolism , Euterpe/chemistry , Lipogenesis/drug effects , Liver/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/prevention & control , Polyphenols/pharmacology , Adipokines/metabolism , Adipose Tissue/drug effects , Adipose Tissue/pathology , Animals , Antioxidants/metabolism , Body Weight/drug effects , Cholesterol/biosynthesis , Diet, High-Fat/adverse effects , Eating/drug effects , Fatty Acids/biosynthesis , Gene Expression Regulation/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Organ Size/drug effects , Oxidative Stress/drug effects , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...