Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 49(7): e2021GL097452, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35860624

ABSTRACT

The physical mechanism of Narrow bipolar events (NBEs) has been studied for decades but it still holds many mysteries. Recent observations indicate that the fast breakdown discharges that produce NBEs sometimes contain a secondary fast breakdown that propagates back in the opposite direction but this has not been fully addressed so far in electromagnetic models. In this study, we investigate fast breakdown using different approaches that employ a Modified Transmission Line with Exponential decay (MTLE) model and propose a new model, named "rebounding MTLE model," which reproduces the secondary fast breakdown current in NBEs. The model provides new insights into the physics of the fast breakdown mechanism.

2.
Sci Rep ; 11(1): 10250, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33986413

ABSTRACT

Optical observations of transient luminous events and remote-sensing of the lower ionosphere with low-frequency radio waves have demonstrated that thunderstorms and lightning can have substantial impacts in the nighttime ionospheric D region. However, it remains a challenge to quantify such effects in the daytime lower ionosphere. The wealth of electron density data acquired over the years by the Arecibo Observatory incoherent scatter radar (ISR) with high vertical spatial resolution (300-m in the present study), combined with its tropical location in a region of high lightning activity, indicate a potentially transformative pathway to address this issue. Through a systematic survey, we show that daytime sudden electron density changes registered by Arecibo's ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). These changes typically correspond to electron density depletions in the D and E region. The survey also shows that these disturbances are different than the ones associated with solar flares, which tend to have longer duration and most often correspond to an increase in the local electron density content.

SELECTION OF CITATIONS
SEARCH DETAIL
...