Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121407, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35636138

ABSTRACT

The search for gold-standard materials for bone regeneration is still a challenge in reconstruction surgery. The ratio between hydroxyapatite (HAp) and ß-tricalcium phosphate (ß-TCP) in biphasic calcium phosphate ceramics (BCPs) is one of the most important factors in osteoinduction promotion and controlled biodegradability, configurating what is currently considered as a possible gold standard material for bone substitution in reconstructive surgery. Exploring the natural genesis of the HAp and ß-TCP phases in fishbones during their postnatal growth, this study developed a biphasic bioceramic obtained from the calcination of Nile tilapia (Oreochromis niloticus) bones as a function of their ages. The natural genesis dynamics of the structural evolution of the ß-TCP and HAp phases were characterized by physicochemical methods, taking into account of the age of the fish and the material processing conditions. Thermal analysis (TGA / DTA) showed complete removal of the organic matter and transitions associated with the transformation of carbonated hydroxyapatite (CDHA) to HAp and ß-TCP phases. After calcination at 900 °C, the material was characterized by: X-ray diffraction (XRD) and refinement by the Rietveld method; Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR); Raman spectroscopy; Scanning Electron Microscopy (SEM) and Flame Atomic Absorption Spectroscopy (FAAS). The analysis allowed identification and quantitative estimate of the variations of the HAp and ß-TCP phases in the formation of the BCPs. The results showed that the decrease in ß-TCP against the increase in the HAp phases is symmetrical to the dynamics of the natural genesis of these phases, surprisingly maintaining the balanced phase proportion even when bones of young fishes were used. The microstructure analysis confirms the observed transformation. In addition, in vivo tests demonstrated the osteoinductive potential of BCP scaffolds implanted in an ectopic site, and their remarkable regenerative functionality, as bone graft, was demonstrated in alveolar bone after tooth extraction. MTT cytotoxicity assay for BCP samples for MC3T3-E1 pre-osteoblasts and L929 fibroblasts cells showed viability equal or higher than 100%. A logistic empirical model is presented to explain the three stages of HAp natural formation with fish age and it is also compared to the fish size evolution.


Subject(s)
Calcium Phosphates , Durapatite , Animals , Bone Regeneration , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Ceramics , Durapatite/chemistry , Hydroxyapatites/chemistry
2.
Int J Biol Macromol ; 183: 316-330, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33930443

ABSTRACT

A hydrogel containing exocellular (1 → 6)-ß-D-glucan (lasiodiplodan, LAS) was developed and its wound healing potential was evaluated. ß-Glucans have attracted much interest by the cosmetic industry sector because of their bioactive and functional properties and in promoting skin health. In the present work an ß-glucan was studied as a healing biomaterial that has not hitherto been reported in the scientific literature. LAS produced by the ascomycete Lasiodiplodia theobromae MMPI was used in the formulation of a healing hydrogel. Physicochemical and microbiological quality parameters, antioxidant potential and stability of the formulation was evaluated. FTIR, thermal analysis and SEM techniques were also employed in the characterization. Wistar rats were used as a biological model to investigate the wound healing potential. Histological analyses of cutaneous tissue from the dorsal region were conducted after 4, 7, 10 and 14 days of treatment, and evaluated re-epithelialization, cell proliferation and collagen production. Physicochemical stability, microbiological quality and antioxidant potential, especially in relation to its ability to scavenge hydroxyl radicals were found. The hydrogel stimulated cell re-epithelialization and proliferation during all days of the treatment, and stimulated an increase of collagen fibers. Lasiodiplodan showed immunomodulatory activity in wound healing and this biomacromolecule could be an alternative compound in wound care.


Subject(s)
Collagen/chemistry , Glucans/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Polysaccharides/chemistry , Wound Healing/drug effects , Animals , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...