Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Lasers Med Sci ; 38(1): 90, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36947266

ABSTRACT

The present study aimed to evaluate photobiomodulation effects on oxidative stress in type 2 diabetes mellitus (DM2). Thirty-one male Wistar rats were used and divided into 4 groups: group 1 - animals without diabetes mellitus 2 without laser 21 J/cm2 (C-SHAM), group 2 - animals with diabetes mellitus 2 without laser 21 J/cm2 (C-DM2), group 3 - animals without diabetes mellitus 2 with laser 21 J/cm2 (L-SHAM), group 4 - animals with diabetes mellitus 2 with laser 21 J/cm2 (L-DM2). The protocol was performed 5 days/week, for 6 weeks. The animals that received photobiomodulation had one dose irradiated at two spots in the right gastrocnemius muscle. Twenty-four hours after the last intervention, the animals were euthanized. Heart, diaphragm, liver, right gastrocnemius, plasma, kidneys, weighed, and stored for further analysis. In rats with DM2, photobiomodulation promoted a decrease in thiobarbituric acid reactive substance assay (TBARS) in plasma levels. On the other hand, photobiomodulation demonstrated an increase in non-protein thiol levels (NPSH) in the heart, diaphragm and gastrocnemius. Moreover, photobiomodulation produced in the heart, diaphragm and plasma levels led to an increase in superoxide dismutase (SOD). Interestingly, photobiomodulation was able to increase superoxide dismutase in rats without DM2 in the heart, diaphragm, gastrocnemius and kidneys. These findings suggested that 6 weeks of photobiomodulation in rats with DM2 promoted beneficial adaptations in oxidative stress, with a decrease in parameters of oxidant activity and an increase in antioxidant activity.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Male , Animals , Rats, Wistar , Diabetes Mellitus, Type 2/radiotherapy , Diabetes Mellitus, Experimental/radiotherapy , Oxidative Stress , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances
SELECTION OF CITATIONS
SEARCH DETAIL