Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 146: 107247, 2024 May.
Article in English | MEDLINE | ID: mdl-38493635

ABSTRACT

The current investigation encompasses the structural planning, synthesis, and evaluation of the urease inhibitory activity of a series of molecular hybrids of hydroxamic acids and Michael acceptors, delineated from the structure of cinnamic acids. The synthesized compounds exhibited potent urease inhibitory effects, with IC50 values ranging from 3.8 to 12.8 µM. Kinetic experiments unveiled that the majority of the synthesized hybrids display characteristics of mixed inhibitors. Generally, derivatives containing electron-withdrawing groups on the aromatic ring demonstrate heightened activity, indicating that the increased electrophilicity of the beta carbon in the Michael Acceptor moiety positively influences the antiureolytic properties of this compounds class. Biophysical and theoretical investigations further corroborated the findings obtained from kinetic assays. These studies suggest that the hydroxamic acid core interacts with the urease active site, while the Michael acceptor moiety binds to one or more allosteric sites adjacent to the active site.


Subject(s)
Hydroxamic Acids , Urease , Allosteric Site , Catalytic Domain , Enzyme Inhibitors/chemistry , Hydroxamic Acids/chemistry , Kinetics , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Cinnamates/chemistry
2.
Arch Pharm (Weinheim) ; 356(6): e2200653, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36922908

ABSTRACT

Vanillin is the main component of natural vanilla extract and is responsible for its flavoring properties. Besides its well-known applications as an additive in food and cosmetics, it has also been reported that vanillin can inhibit fungi of clinical interest, such as Candida spp., Cryptococcus spp., Aspergillus spp., as well as dermatophytes. Thus, the present work approaches the synthesis of a series of vanillin derivatives with 1,2,3-triazole fragments and the evaluation of their antifungal activities against Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, Cryptococcus gattii, Trichophyton rubrum, and Trichophyton interdigitale strains. Twenty-two vanillin derivatives were obtained, with yields in the range of 60%-91%, from copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between two terminal alkynes prepared from vanillin and different benzyl azides. In general, the evaluated compounds showed moderate activity against the microorganisms tested, with minimum inhibitory concentration (MIC) values ranging from 32 to >512 µg mL-1 . Except for compound 3b against the C. gattii R265 strain, all vanillin derivatives showed fungicidal activity for the yeasts tested. The predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the compounds indicated favorable profiles for drug development. In addition, a four-dimensional structure-activity relationship (4D-SAR) analysis was carried out and provided useful insights concerning the structures of the compounds and their biological profile. Finally, molecular docking calculations showed that all compounds bind favorably at the lanosterol 14α-demethylase enzyme active site with binding energies ranging from -9.1 to -12.2 kcal/mol.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Antifungal Agents/chemistry , Triazoles/pharmacology , Microbial Sensitivity Tests
3.
RSC Adv ; 12(53): 34496-34502, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545628

ABSTRACT

We report herein the synthesis of primary and secondary ß-chalcogen amines through the regioselective ring-opening reaction of non-activated 2-oxazolidinones promoted by in situ generated chalcogenolate anions. The developed one-step protocol enabled the preparation of ß-selenoamines, ß-telluroamines and ß-thioamines with appreciable structural diversity and in yields of up to 95%.

4.
Chem Commun (Camb) ; 56(95): 15024-15027, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33185643

ABSTRACT

Here we discovered an unprecedented giant octahedral coordination compound bearing 16 Zn2+, 12 Na+, 8 O2-, 4 OH-, 13 H2O and 6 L4- ligands [L4- = fully deprotonated tetra(carboxymethoxy)calix[4]arene]. Its structure was elucidated by single-crystal X-ray diffraction, wavelength-dispersive X-ray spectroscopy and MALDI-TOF mass spectrometry. This compound, Zn8Na6L6⊃Zn8Na6O8(OH)4(H2O)13 (external⊃internal), has eight tetrahedral zinc ions forming the coordination vertices of an outermost cube where carboxylate groups from the sodium calixarenes are anchored. Its core consists of eight Zn2+, six Na+, eight O2-, and four OH- distributed over three layers, besides thirteen coordinated H2O molecules.

5.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 667-677, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31166918

ABSTRACT

We report here for the first time a cocrystal of the so-called neutral calix[4]tube, which is two tail-to-tail-arranged and partially deprotonated tetrakis(carboxymethoxy)calix[4]arenes, including three sodium ions, with 2-(thiophen-2-yl)-1,3-benzothiazole, namely trisodium bis(carboxymethoxy)bis(carboxylatomethoxy)calix[4]arene tris(carboxymethoxy)(carboxylatomethoxy)calix[4]arene-2-(thiophen-2-yl)-1,3-benzothiazole-dimethyl sulfoxide-water (1/1/2/2), 3Na+·C36H30O122-·C36H31O12-·C11H7NS2·2C2H6OS·2H2O, which provides a new approach into the host-guest chemistry of inclusion complexes. Three packing polymorphs of the same benzothiazole with high Z' (one with Z' = 8 and two with Z' = 4) were also discovered in the course of our desired cocrystallization. The inspection of these polymorphs and a previously known polymorph with Z' = 2 revealed that Z' increases as the strength of intermolecular contacts decreases. Also, these results expand the frontier of invoking calixarenes as a host for nonsolvent small molecules, besides providing knowledge on the rare formation of high-Z' packing polymorphs of simple molecules, such as the target benzothiazole.

6.
Biomed Pharmacother ; 108: 1703-1711, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30372873

ABSTRACT

Chagas disease is a major health problem not only in Latin America but also in Europe and North America due to the spread of this disease into nonendemic areas. In terms of global burden, this major tropical infection is considered to be one of the most neglected diseases, and there are currently only two available chemotherapies: benznidazole and nifurtimox. Unfortunately, although these chemotherapies are beneficial in the acute phase of the disease, benznidazole and nifurtimox lead to significant side effects, including hepatitis and neurotoxicity. Therefore, the search for and development of more effective, safe and inexpensive anti-Trypanosoma cruzi drugs are required. In this work, a series of 10 nitroaromatic Schiff bases bearing different (nitro) aromatic rings-was synthesized. Subsequently, the in vitro and in vivo anti-T. cruzi activities of the Schiff bases were investigated, as well as the in vivo toxicity and the biological effects. The basic structure of the most promising in vivo Schiff base, 10 would be useful in the synthesis of new compounds for Chagas disease treatment.


Subject(s)
Hydrocarbons, Aromatic/pharmacology , Schiff Bases/chemical synthesis , Schiff Bases/pharmacology , Toxicity Tests , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Administration, Oral , Animals , Female , Hydrocarbons, Aromatic/chemical synthesis , Hydrocarbons, Aromatic/chemistry , Hydrocarbons, Aromatic/toxicity , Liver/drug effects , Liver/pathology , Mice , Parasitemia/drug therapy , Schiff Bases/chemistry , Schiff Bases/toxicity , Trypanocidal Agents/chemistry , Trypanocidal Agents/toxicity
7.
J Adv Res ; 9: 51-61, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30046486

ABSTRACT

Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (•O2-). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to •O2- scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb) and GI50 for several human cancer cell was observed.

8.
Front Genet ; 9: 36, 2018.
Article in English | MEDLINE | ID: mdl-29545821

ABSTRACT

A hallmark of imprinted genes in mammals is the occurrence of parent-of-origin-dependent asymmetry of DNA cytosine methylation (5mC) of alleles at CpG islands (CGIs) in their promoter regions. This 5mCpG asymmetry between the parental alleles creates allele-specific imprinted differentially methylated regions (iDMRs). iDMRs are often coupled to the transcriptional repression of the methylated allele and the activation of the unmethylated allele in a tissue-specific, developmental-stage-specific and/or isoform-specific fashion. iDMRs function as regulatory platforms, built through the recruitment of chemical modifications to histones to achieve differential, parent-of-origin-dependent chromatin segmentation states. Here, we used a comparative computational data mining approach to identify 125 novel constitutive candidate iDMRs that integrate the maximal number of allele-specific methylation region records overlapping CGIs in human methylomes. Twenty-nine candidate iDMRs display gametic 5mCpG asymmetry, and another 96 are candidate secondary iDMRs. We established the maternal origin of the 5mCpG imprints of one gametic (PARD6G-AS1) and one secondary (GCSAML) iDMRs. We also found a constitutively hemimethylated, nonimprinted domain at the PWWP2AP1 promoter CGI with oocyte-derived methylation asymmetry. Given that the 5mCpG level at the iDMRs is not a sufficient criterion to predict active or silent locus states and that iDMRs can regulate genes from a distance of more than 1 Mb, we used RNA-Seq experiments from the Genotype-Tissue Expression project and public archives to assess the transcriptional expression profiles of SNPs across 4.6 Mb spans around the novel maternal iDMRs. We showed that PARD6G-AS1 and GCSAML are expressed biallelically in multiple tissues. We found evidence of tissue-specific monoallelic expression of ZNF124 and OR2L13, located 363 kb upstream and 419 kb downstream, respectively, of the GCSAML iDMR. We hypothesize that the GCSAML iDMR regulates the tissue-specific, monoallelic expression of ZNF124 but not of OR2L13. We annotated the non-coding epigenomic marks in the two maternal iDMRs using data from the Roadmap Epigenomics project and showed that the PARD6G-AS1 and GCSAML iDMRs achieve contrasting activation and repression chromatin segmentations. Lastly, we found that the maternal 5mCpG imprints are perturbed in several hematopoietic cancers. We conclude that the maternal 5mCpG imprints at PARD6G-AS1 and GCSAML iDMRs are decoupled from parent-of-origin transcriptional expression effects in multiple tissues.

9.
J Photochem Photobiol B ; 172: 129-138, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28549321

ABSTRACT

Thirty-nine Schiff bases were synthesized by performing microwave-assisted condensation of the corresponding aldehydes and aromatic amines. Their reactive nitrogen species (RNS) scavenging activity and inhibitory effects against cancer cell growth were then subsequently investigated. Additionally, the interaction between the calf thymus DNA (ctDNA) and selected Schiff bases was evaluated using fluorescence spectroscopy, and their binding parameters were determined. The yields of the various compounds ranged from moderate to excellent (43-99%) after only a 2-min reaction. The hydroxylated Schiff bases 2, 8, 15, 16, 18, 20, 29, 32, 34, and 37 were found to be potent scavengers of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals with half-maximal scavenging concentration (SC50) values lower than that of the positive control, resveratrol. The presence of hydroxyl substituents on the aromatic rings also proved essential to the cytotoxicity of the compounds. The binding constants (Kb) obtained using fluorescence spectroscopy ranged from 0.37 to 3.07×105Lmol-1, and were strongly influenced by the structure and hydroxylation degree. Schiff bases 3 and 8 showed promising cytotoxic activity, with half-maximal growth inhibitory (GI50) values in the same order of magnitude as those exhibited by the reference drug, doxorubicin against various cell lines. Interestingly, these compounds also showed the highest Kb, suggesting that the cytotoxic activity could be related to their interaction with the DNA of the tumor cells. The results of this study highlighted some Schiff bases as potential lead compounds for the design of new free radical scavengers and anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , DNA/chemistry , Free Radical Scavengers/chemistry , Schiff Bases/chemistry , Animals , Antineoplastic Agents/toxicity , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/metabolism , Drug Screening Assays, Antitumor , Humans , Kinetics , Reactive Nitrogen Species/chemistry , Schiff Bases/metabolism , Schiff Bases/toxicity , Thermodynamics
10.
Mycopathologia ; 179(3-4): 243-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25515245

ABSTRACT

Infections caused by dermatophytes, mainly Trichophyton rubrum,are often vulnerable to relapses upon cessation of antifungal therapy, reinforcing the need of new antifungals. Aldimines have potential biological activities, but there are few reports on their antifungal profile. The aim of this study was to evaluate the antifungal activity of 2-(benzylideneamino)phenol (3A3) and 4-(benzylideneamino)phenol (3A4) against dermatophytes. We determined the minimum inhibitory concentration, minimum fungicidal concentration, time-kill curves and fractional inhibitory concentration of the combination of 3A3, 3A4 and itraconazole against a set of isolates of T. rubrum and T. interdigitale. 3A3 was tested in a murine model of dermatophytoses caused by T. rubrum, and the effect on phagocytosis was assessed. The MIC values ranged from 8 to 32 µg/mL for 3A3 and from 64 to 256 µg/mL for 3A4. The interaction between 3A3 and 3A4 with itraconazole proved to be synergistic and indifferent, respectively. 3A3 was as efficient as itraconazole in reducing the fungal burden on the skin of mice, being this effect associated with the influx of neutrophil and macrophage. Also, 3A3 was able to increase the internalization of conidia by macrophages. Altogether, our data encourage future clinical studies with 3A3 to treat dermatophytoses.


Subject(s)
Antifungal Agents/pharmacology , Phenol/pharmacology , Tinea/microbiology , Trichophyton/drug effects , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Female , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Phenol/chemistry , Tinea/drug therapy , Trichophyton/genetics , Trichophyton/isolation & purification , Trichophyton/physiology
11.
Recent Pat Biotechnol ; 8(1): 76-88, 2014.
Article in English | MEDLINE | ID: mdl-24354526

ABSTRACT

Nature is an irrefutable source of inspiration for the modern man in many aspects. The observation and understanding of nature have allowed the development of new materials, new sources of energies, new drugs etc. Specifically, natural products provide a great contribution to the development of new agents for the treatment of infections and antitumor agents. However, obtaining natural products directly from animals, fungi, bacteria, plants etc has been considered not enough to attend the high demand by pharmaceutical industries. In this regard, various strategies based on biotechnological processes or synthetic approaches have been developed. In this scenario the total synthesis can be undoubtedly a useful and powerful tool for obtaining higher amounts of natural products and/or structural modifications thereof. Herein, we emphasize successful examples of total synthesis of galanthamine, morphine, paclitaxel and podophyllotoxin - natural products approved as pharmaceuticals.


Subject(s)
Biological Products/metabolism , Pharmaceutical Preparations/chemical synthesis , Biological Products/chemistry , Galantamine/chemical synthesis , Galantamine/chemistry , Morphine/chemical synthesis , Morphine/chemistry , Paclitaxel/chemical synthesis , Paclitaxel/chemistry , Pharmaceutical Preparations/chemistry , Podophyllotoxin/chemical synthesis , Podophyllotoxin/chemistry
12.
J Nat Prod ; 76(12): 2234-45, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24245962

ABSTRACT

Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 µM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogues were synthesized using different aromatic aldehydes. The synthesized 6H-benzo[c]cromen-6-ones, 5H-chromene[4,3-b]pyridin-5-one, and 5H-chromene[4,3-c]pyridin-5-one also showed inhibitory properties, and three 6H-benzo[c]cromen-6-ones were more effective (IC50 = 12.8-22.8 µM) than the lead compound. Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.


Subject(s)
Chromones/pharmacology , Lactones/pharmacology , Photosynthesis/drug effects , Pyridones/pharmacology , Alternaria/chemistry , Chloroplasts/drug effects , Chloroplasts/metabolism , Chromones/chemical synthesis , Chromones/chemistry , Electron Transport/drug effects , Lactones/analysis , Lactones/chemical synthesis , Lactones/chemistry , Molecular Structure , Mycotoxins/pharmacology , Oxidation-Reduction , Pyridones/chemical synthesis , Pyridones/chemistry , Spinacia oleracea/cytology , Spinacia oleracea/metabolism
13.
Molecules ; 17(10): 11447-55, 2012 Sep 27.
Article in English | MEDLINE | ID: mdl-23018920

ABSTRACT

A comparative study of the chemical composition of essential oils of two very similar species of the Verbenaceae family (Lantana camara and L. radula) revealed that the main components of essential oil of L. camara were germacrene-D (19.8%) and E-caryophyllene (19.7%), while those of L. radula were E-caryophyllene (25.3%), phytol (29.2%) and E-nerolidol (19.0%). We have hypothesized that the observed differences could contribute to the differentiated reaction of the two species of Lantana to the attack of the phytopathogenic fungi Corynespora cassiicola. An experiment, involving C. cassiicola cultivation in culture media containing volatile oils of the two species demonstrated that the oils of L. radula were more fungistatic than the oils of L. camara, in accordance with the in vivo observations. It is likely that E-nerolidol and phytol, only found in the oil of L. radula, play a significant role in the effects of L. radula on C. cassiicola.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Lantana/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Fungi/drug effects , Fungi/growth & development , Microbial Sensitivity Tests
14.
Chem Biol Drug Des ; 78(5): 810-5, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21756287

ABSTRACT

Aldimines are aldehyde-derived compounds that contain a C=N group. Besides its broad industrial applications, this class of non-naturally occurring compounds are found to possess antibacterial, antifungal, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties. Based on this, six aryl aldimines were synthesized from the condensation of aromatic amines with benzaldehydes. The antifungal activities of synthesized compounds were evaluated against nineteen fungal strains that included Candida and Aspergillus species, Cryptococcus neoformans. The aryl aldimines 2-(benzylideneamino)phenol (3) and 4-(benzylideneamino)phenol (8) were the most active compounds against the fungi studied. Compounds 3 and 8 efficiently inhibited the metabolism of C. neoformans mature biofilm.


Subject(s)
Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Benzylidene Compounds/chemistry , Candida/drug effects , Cryptococcus neoformans/drug effects , Phenols/pharmacology , Antifungal Agents/chemistry , Biofilms/drug effects , Microbial Sensitivity Tests , Phenols/chemical synthesis , Phenols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...