Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(10): 15127-15143, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34628609

ABSTRACT

Herbicide mixtures have often been used to control weeds in crops worldwide, but the behavior of these mixtures in the environment is still poorly understood. Laboratory and greenhouse tests have been conducted to study the interaction of the herbicides diuron, hexazinone, and sulfometuron-methyl which have been applied alone and in binary and ternary mixtures in the processes of sorption, desorption, half-life, and leaching in the soil. A new index of the risk of leaching of these herbicides has also been proposed. The sorption and desorption study has been carried out by the batch equilibrium method. The dissipation of the herbicides has been evaluated for 180 days to determine the half-life (t1/2). The leaching tests have been carried out on soil columns. The herbicides isolated and in mixtures have been quantified using ultra-high performance liquid chromatography coupled to the mass spectrometer. Diuron, hexazinone, and sulfometuron-methyl in binary and ternary mixtures have less sorption capacity and greater desorption when compared to these isolated herbicides. Dissipation of diuron alone is slower, with a half-life (t1/2) = 101 days compared to mixtures (t1/2 between 44 and 66 days). For hexazinone and sulfometuron-methyl, the dissipation rate is lower in mixtures (t1/2 over 26 and 16 days), with a more pronounced effect in mixtures with the presence of diuron (t1/2 = 47 and 56 and 17 and 22 days). The binary and ternary mixtures of diuron, hexazinone, and sulfometuron-methyl promoted more significant transport in depth (with the three herbicides quantified to depth P4, P7, and P7, respectively) compared to the application of these isolated herbicides (quantified to depth P2, P4, and P5). Considering the herbicides' desorption and solubility, the new index proposed to estimate the leaching potential allowed a more rigorous assessment concerning the risk of leaching these pesticides, with hexazinone and sulfometuron-methyl presenting a higher risk of contamination of groundwater.


Subject(s)
Herbicides , Pesticides , Soil Pollutants , Adsorption , Diuron , Herbicides/analysis , Soil , Soil Pollutants/analysis
2.
Sci Total Environ ; 769: 144113, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33486169

ABSTRACT

Glyphosate is applied for dissection in no-till and post-emergence management in transgenic crops in agricultural fields near the Cerrado and Caatinga biomes. These biomes together represent 33.8% of the Brazilian territory, contributing to the maintenance of great world diversity in flora and fauna. Despite actions to protect them, the proximity with agricultural areas and intense use of glyphosate puts at risk the preservation of native vegetation due to the contamination via herbicide transport processes. Our objectives were: i) to determine the sensitivity of native species from the Cerrado and Caatinga to glyphosate contamination via drift and groundwater; ii) evaluate the level of sensitivity to glyphosate among the different organs of plants. The highest intoxications (upper 80%) were observed for Bauhinia cheilantha, Mimosa caesalpiniaefolia, Mimosa tenuiflora and Amburana cearensis due to drift simullation. The species with 90% of total dry matter reduction were Bauhinia cheilantha, Enterolobium contortisiliquum, Mimosa caesalpiniaefolia, Mimosa tenuiflora, Tabebuia aurea. B. cheilantha and M. tenuiflora are most affected by exposure to glyphosate drift, with 50% of total dry matter reduction when exposed to doses below 444,0 g ha-1. Leaf growth is more sensitive to glyphosate for drift exposure for most species. Hymenaea courbaril is an exception, with greater sensitivity to root growth (50% dry matter reduction at doses below 666,0 g ha-1). B. cheilantha is the species most sensitive to drift exposure; however, it showed complete tolerance to contamination in subsurface waters. Other species such as Anadenanthera macrocarpa and M. caesalpiniifolia are also sensitive to drift, but without reach 90% of total dry matter reduction. A. macrocarpa, M. caesalpiniifolia and T. aurea were tolerant to contamination by subsurface water. The differential tolerance of trees confirms glyphosate's potential as a species selection agent in the Cerrado and Caatinga biomes.


Subject(s)
Herbicides , Trees , Brazil , Ecosystem , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...