Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Histol Histopathol ; : 18776, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38920277

ABSTRACT

The percentage of the total amount of melatonin produced in vertebrates that comes from the pineal is small (likely <5%) but, nevertheless, functionally highly noteworthy. The significance of pineal melatonin is that it is secreted cyclically such that it has a critical function in influencing not only the suprachiasmatic nucleus but clock genes that reside in perhaps every cell throughout the organism. Extrapineal melatonin, which may be synthesized in the mitochondria of all other cells in much larger amounts than that in the pineal gland has a different function than that derived from the pineal gland. Its synthesis is not circadian and it is not directly impacted by the photoperiodic environment. Also, melatonin from the extrapineal sites is not normally secreted into the blood stream; rather, it acts locally in its cell of synthesis or, possibly via paracrine mechanisms, on immediately adjacent cells. The functions of extrapineal melatonin include central roles in maintaining molecular and redox homeostasis and actions in resisting pathological processes due to its ability to directly or indirectly detoxify free radicals. The vast majority of organisms that exist on Earth lack a pineal gland so pineal-derived melatonin is unique to vertebrates. Evidence suggests that all invertebrates, protists and plants synthesized melatonin and they have no pineal homolog; thus, the production of melatonin by extrapineal cells in vertebrates should not be unexpected. While the factors that control pineal melatonin synthesis are well documented, the processes that regulate extrapineal melatonin production are undefined.

2.
Front Endocrinol (Lausanne) ; 15: 1414463, 2024.
Article in English | MEDLINE | ID: mdl-38808108

ABSTRACT

This article discusses data showing that mammals, including humans, have two sources of melatonin that exhibit different functions. The best-known source of melatonin, herein referred to as Source #1, is the pineal gland. In this organ, melatonin production is circadian with maximal synthesis and release into the blood and cerebrospinal fluid occurring during the night. Of the total amount of melatonin produced in mammals, we speculate that less than 5% is synthesized by the pineal gland. The melatonin rhythm has the primary function of influencing the circadian clock at the level of the suprachiasmatic nucleus (the CSF melatonin) and the clockwork in all peripheral organs (the blood melatonin) via receptor-mediated actions. A second source of melatonin (Source # 2) is from multiple tissues throughout the body, probably being synthesized in the mitochondria of these cells. This constitutes the bulk of the melatonin produced in mammals and is concerned with metabolic regulation. This review emphasizes the action of melatonin from peripheral sources in determining re-dox homeostasis, but it has other critical metabolic effects as well. Extrapineal melatonin synthesis does not exhibit a circadian rhythm and it is not released into the blood but acts locally in its cell of origin and possibly in a paracrine matter on adjacent cells. The factors that control/influence melatonin synthesis at extrapineal sites are unknown. We propose that the concentration of melatonin in these cells is determined by the subcellular redox state and that melatonin synthesis may be inducible under stressful conditions as in plant cells.


Subject(s)
Circadian Rhythm , Melatonin , Pineal Gland , Melatonin/metabolism , Melatonin/blood , Humans , Animals , Circadian Rhythm/physiology , Pineal Gland/metabolism , Suprachiasmatic Nucleus/metabolism
3.
J Mol Med (Berl) ; 101(11): 1335-1353, 2023 11.
Article in English | MEDLINE | ID: mdl-37728644

ABSTRACT

The red blood cells (RBCs) are essential to transport oxygen (O2) and nutrients throughout the human body. Changes in the structure or functioning of the erythrocytes can lead to several deficiencies, such as hemolytic anemias, in which an increase in reactive oxidative species generation is involved in the pathophysiological process, playing a significant role in the severity of several clinical manifestations. There are important lines of defense against the damage caused by oxidizing molecules. Among the antioxidant molecules, the enzyme peroxiredoxin (Prx) has the higher decomposition power of hydrogen peroxide, especially in RBCs, standing out because of its abundance. This review aimed to present the recent findings that broke some paradigms regarding the three isoforms of Prxs found in RBC (Prx1, Prx2, and Prx6), showing that in addition to their antioxidant activity, these enzymes may have supplementary roles in transducing peroxide signals, as molecular chaperones, protecting from membrane damage, and maintenance of iron homeostasis, thus contributing to the overall survival of human RBCs, roles that seen to be disrupted in hemolytic anemia conditions.


Subject(s)
Antioxidants , Peroxiredoxins , Humans , Antioxidants/metabolism , Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Oxidative Stress , Erythrocytes/metabolism , Oxidation-Reduction , Hydrogen Peroxide , Oxygen , Hemolysis
4.
J Mol Med (Berl) ; 101(1-2): 83-99, 2023 02.
Article in English | MEDLINE | ID: mdl-36598531

ABSTRACT

Oxidative stress is a major cause of morbidity and mortality in human health and disease. In this review, we focus on the Forkhead Box (Fox) subclass O3 (FoxO3), an extensively studied transcription factor that plays a pleiotropic role in a wide range of physiological and pathological processes by regulating multiple gene regulatory networks involved in the modulation of numerous aspects of cellular metabolism, including fuel metabolism, cell death, and stress resistance. This review will also focus on regulatory mechanisms of FoxO3 expression and activity, such as crucial post-translational modifications and non-coding RNAs. Moreover, this work discusses and evidences some pathways to how this transcription factor and reactive oxygen species regulate each other, which may lead to the pathogenesis of various types of diseases. Therefore, in addition to being a promising therapeutic target, the FoxO3-regulated signaling pathways can also be used as reliable diagnostic and prognostic biomarkers and indicators for drug responsiveness.


Subject(s)
Forkhead Box Protein O3 , Forkhead Transcription Factors , Oxidative Stress , Humans , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Oxidative Stress/genetics , Signal Transduction
5.
Genes (Basel) ; 13(12)2022 12 11.
Article in English | MEDLINE | ID: mdl-36553603

ABSTRACT

Melatonin (MEL) presents well-documented pleiotropic actions against oxidative stress (OS), acting indirectly through activation of transcription factors, e.g., FoxO3 and Nrf2. Thus, this study aimed to investigate the possible modulating effects of MEL on the redox signaling pathways PI3K/AKT/FoxO3 and Keap1/Nrf2/ARE in K562 erythroleukemic cells subjected to OS induction. For this, the viability, and transcript levels of genes involved in redox adaptation were evaluated in K562 cells in different periods of erythroid differentiation: under OS induction by hydrogen peroxide (100 µM H2O2); treated with 1 nM (C1) and 1 mM (C2) MEL; and associated or not with stress induction. We observed a restoration of physiological levels of Nrf2 in both MEL concentrations under OS. The C1 was related to enhanced expression of antioxidant and proteasome genes through the Nrf2-ARE pathway, while C2 to the induction of FOXO3 expression, suggesting an involvement with apoptotic pathway, according to BIM transcript levels. The effects of MEL administration in these cells showed a period and dose-dependent pattern against induced-OS, with direct and indirect actions through different pathways of cellular adaptation, reinforcing the importance of this indolamine in the regulation of cellular homeostasis, being a promising therapeutic alternative for diseases that present an exacerbated OS.


Subject(s)
Melatonin , Humans , Melatonin/pharmacology , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , K562 Cells , Hydrogen Peroxide/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidation-Reduction
6.
Genes (Basel) ; 13(12)2022 12 15.
Article in English | MEDLINE | ID: mdl-36553634

ABSTRACT

This study aimed to establish the importance of ergothioneine (ERT) in the erythroid adaptation mechanisms by appraising the expression levels of redox-related genes associated with the PI3K/AKT/FoxO3 and Nrf2-ARE pathways using K562 cells induced to erythroid differentiation and H2O2-oxidative stress. Cell viability and gene expression were evaluated. Two concentrations of ERT were assessed, 1 nM (C1) and 100 µM (C2), with and without stress induction (100 µM H2O2). Assessments were made in three periods of the cellular differentiation process (D0, D2, and D4). The C1 treatment promoted the induction of FOXO3 (D0 and 2), PSMB5, and 6 expressions (D4); C1 + H2O2 treatment showed the highest levels of NRF2 transcripts, KEAP1 (D0), YWHAQ (D2 and 4), PSMB5 (D2) and PSMB6 (D4); and C2 + H2O2 (D2) an increase in FOXO3 and MST1 expression, with a decrease of YWHAQ and NRF2 was observed. in C2 + H2O2 (D2) an increase in FOXO3 and MST1, with a decrease in YWHAQ and NRF2 was observed All ERT treatments increased gamma-globin expression. Statistical multivariate analyzes highlighted that the Nrf2-ARE pathway presented a greater contribution in the production of PRDX1, SOD1, CAT, and PSBM5 mRNAs, whereas the PI3K/AKT/FoxO3 pathway was associated with the PRDX2 and TRX transcripts. In conclusion, ERT presented a cytoprotective action through Nrf2 and FoxO3, with the latter seeming to contribute to erythroid proliferation/differentiation.


Subject(s)
Ergothioneine , Humans , Ergothioneine/pharmacology , Ergothioneine/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , K562 Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Gene Expression
7.
Trends Psychiatry Psychother ; 43(4): 278-285, 2021.
Article in English | MEDLINE | ID: mdl-34982515

ABSTRACT

INTRODUCTION: Schizophrenia is a complex psychiatric disorder that affects approximately twenty million people worldwide. Various factors have been associated with the physiopathology of this disease such as oxidative stress, which is an imbalance between pro-oxidant and antioxidant molecules. OBJECTIVE: This study evaluated the association between biomarkers of oxidative stress and response to pharmacological treatment among patients with schizophrenia in the context of their clinical information, demographic data, and lifestyle. METHODS: A total of 89 subjects were included, 26 of whom were treatment-responsive schizophrenia patients (Group 1), 27 treatment-resistant schizophrenia patients (Group 2), and 36 healthy controls (Group 3). All of the subjects completed a questionnaire to provide clinical and demographic data, and all provided peripheral blood samples. The oxidative stress markers analyzed using spectrophotometry were catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), total glutathione (GSH-t), malondialdehyde (MDA), and Trolox-equivalent antioxidant capacity (TEAC; p < 0.05). RESULTS: When all schizophrenia patients (G1 + G2) were compared to the control group, SOD levels were found to be lower among schizophrenia patients (p < 0.0001), while MDA and CAT levels were higher (p < 0.0001 and p = 0.0191, respectively). GPx, GSH-t, and TEAC levels were similar in all three groups (p > 0.05). CONCLUSION: Lower SOD levels and higher MDA and CAT levels indicate oxidative damage in schizophrenia patients, regardless of their response to pharmacological treatment. Smoking is associated with oxidative stress, in addition, a family history of the disease was also found to be correlated with cases of schizophrenia, which reflects the relevance of genetics in disease development.


Subject(s)
Schizophrenia , Biomarkers , Glutathione Peroxidase/metabolism , Humans , Oxidative Stress , Schizophrenia/drug therapy , Schizophrenia, Treatment-Resistant
8.
Ecotoxicol Environ Saf ; 190: 110107, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31901814

ABSTRACT

Increased malondialdehyde (MDA) levels are commonly considered an indicator of lipid peroxidation derived from oxidative stress insults promoted by exposure of fish to pollutants. However, a decrease in MDA levels after xenobiotic exposure has been also reported, an effect that is mostly attributed to enhanced antioxidant defenses. In this study, we assessed whether pollutant-mediated MDA decrease would be associated with antioxidant enhancement or with its metabolism by aldehyde dehydrogenase (ALDH) in the liver and gills of lambari (Astyanax altiparanae) exposed to diesel oil (0.001, 0.01, and 0.1 mL/L). MDA levels were decreased in the liver of lambari exposed to diesel. The activities of the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx), were unchanged in the liver, while that of glucose-6-phosphate dehydrogenase (G6PDH) was decreased. In contrast, levels of total glutathione (tGSH) and the activity of glutathione S-transferase (GST) were increased in the liver, which partly support antioxidant protection against lipid peroxidation. More importantly, ALDH activity increased in a concentration-dependent manner, being negatively correlated with MDA levels, indicating MDA metabolism by ALDH. In the gills, diesel exposure increased MDA and lipid hydroperoxide levels, and promoted increases in antioxidant defenses, indicating oxidative stress. Curiously, ALDH activity was undetectable in the gills, supporting the possibility of direct MDA excretion in the water by the gills. Analyses of MDA in the water revealed increased levels of MDA in the aquaria in which the fish were exposed to diesel, compared to control aquaria. A second experiment was carried out in which the fish were intraperitoneally injected with MDA (10 mg/kg) and analyzed after 1, 6, and 12 h. MDA injection caused a time-dependent decrease in hepatic MDA levels, did not alter ALDH, CAT, GPx, and GST activities, and decreased G6PDH activity and tGSH levels. In the gills, MDA injection caused a slight increase in MDA levels after 1 h, but did not alter GPx, G6PDH, and GST activities. MDA injection also enhanced CAT activity and tGSH levels in the gills. MDA concentration in water increased progressively after 1, 6, and 12 h, supporting the hypothesis of direct MDA excretion as an alternative route for MDA elimination in fish. Our results suggest that the decreased MDA levels after exposure of lambari to diesel oil pollutant probably reflects an association between enhanced antioxidant protection, MDA metabolism, and MDA excretion in water.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Fishes/metabolism , Gasoline/toxicity , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Catalase/metabolism , Characidae/metabolism , Gills/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Liver/metabolism , Oxidative Stress , Seafood , Water Pollutants, Chemical/metabolism
9.
Free Radic Biol Med ; 141: 34-46, 2019 09.
Article in English | MEDLINE | ID: mdl-31163255

ABSTRACT

This study examined particularly relevant redox pathways such as glycolysis, pentose phosphate pathway (PPP), metHb reductase and nucleotide metabolism, in order to better address how sickle cells deal with redox metabolism disruption. We also investigated the generation of specific oxidative lesions, and the levels of an unexplored antioxidant that could act as a candidate biomarker for oxidative status in sickle cell anemia (SCA). We adopted rigorous exclusion criteria to obtain the studied groups, which were composed by 10 subjects without hemoglobinopathies and 10 SCA patients. We confirmed that sickle cells overwhelm the antioxidant defense system, leading to an impaired antioxidant capacity that significantly contributed to the increase in cholesterol oxidation (ChAld) and hemolysis. Among the antioxidants evaluated, ergothioneine levels decreased in SCA (two-fold). We found strong correlations of ergothioneine levels with other erythrocyte metabolism markers, suggesting its use as an antioxidant therapy alternative for SCA treatment. Moreover, we found higher activities of MetHb reductase, AChE, G6PDH, HXK, and LDH, as well as levels of NADPH, ATP and hypoxanthine in sickle cells. On this basis, we conclude that impaired antioxidant capacity leaves to a loss of glycolysis and PPP shifting mechanism control and further homeostasis rupture, contributing to a decreased lifespan of sickle cells.


Subject(s)
Anemia, Sickle Cell/blood , Antioxidants/metabolism , Erythrocytes/metabolism , Homeostasis , Adult , Anemia, Sickle Cell/physiopathology , Biomarkers/metabolism , Brazil , Case-Control Studies , Cholesterol/metabolism , Ergothioneine/analysis , Erythrocytes/pathology , Female , Glycolysis , Hemoglobinopathies/metabolism , Hemolysis , Humans , Hypoxanthine/analysis , Inflammation , Lipid Peroxidation , Male , Osmoregulation , Oxidation-Reduction , Pentose Phosphate Pathway , Young Adult
10.
Toxicol In Vitro ; 56: 62-74, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30654084

ABSTRACT

This study investigated the effects of incubation period and melatonin treatment on red blood cell (RBC) metabolism in an auto-incubation model of H2O2-induced oxidative stress. The study was carried out on three healthy adult donors by incubating RBCs in their own plasma at 37 °C, or under the influence of 1 mM H2O2 with and without 100 µM melatonin at different times (0, 1, 3 and 6 h). We assessed incubation period, treatment, as well as any interaction effects between these predictors on erythrocyte osmoregulation, hemolytic rate, oxidative stress markers, and adenylate nucleotide levels. We did not find any relevant effects of both incubation period and treatments on osmotic, antioxidant and adenylate parameters. On the other hand, hemolysis degree and biomolecule oxidation levels in the plasma increased over time, 3-fold and about 25%, respectively, regardless any treatment influence. H2O2 treatment more than doubled protein carbonyl groups, regardless time in plasma, and in a time-depending way in erythrocyte membrane extract, effects that were neutralized by melatonin treatment. Through multivariate analyses, we could expand the understanding of energy and redox metabolisms in the maintenance of cellular integrity and metabolic homeostasis. Another interesting observation was the 65-75% contribution of the oxidative lesion markers on hemolysis. Hence, these findings suggested a new and more intuitive RBC suspension model and reinforced the beneficial use of melatonin in human disorders.


Subject(s)
Cell Culture Techniques , Erythrocytes , Adult , Antioxidants/pharmacology , Cells, Cultured , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Hemolysis/drug effects , Humans , Hydrogen Peroxide/pharmacology , Male , Melatonin/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Uric Acid/pharmacology
11.
Reprod Toxicol ; 81: 168-179, 2018 10.
Article in English | MEDLINE | ID: mdl-30103012

ABSTRACT

This study evaluated the consequences of gestational exposure to di-n-butyl phthalate (DBP) for testicular steroidogenesis and sperm parameters of the adult gerbil and the interference of corn oil (co), a vehicle widely used for administration of liposoluble agents, on DBP effects. Pregnant gerbils received no treatment or were treated from gestational day 8 to 23 via gavage with 0.1 mL/day of co only or containing DBP (100 mg/kg/day). Maternal co intake enhanced serum estradiol levels and testicular content of ERα, and reduced sperm reserve of adult offspring. Gestational DBP exposure caused dyslipidemia, increased serum and intratesticular estradiol levels and reduced sperm reserve and motility. Thus, maternal co supplementation alters circulating estradiol and impairs sperm quantity and quality of offspring. Gestational DBP exposure alters lipid metabolism and testicular steroidogenesis and worsens the negative effects of co on the sperm reserve and motility of gerbil. Therefore, co interferes with the reproductive response to DBP.


Subject(s)
Corn Oil/administration & dosage , Dibutyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Estradiol/metabolism , Prenatal Exposure Delayed Effects , Spermatozoa/drug effects , Animals , Female , Gerbillinae , Lipid Metabolism/drug effects , Male , Maternal-Fetal Exchange , Pregnancy , Sperm Count , Sperm Motility/drug effects , Spermatozoa/physiology , Testis/drug effects , Testis/metabolism
12.
Free Radic Biol Med ; 106: 53-61, 2017 05.
Article in English | MEDLINE | ID: mdl-28188925

ABSTRACT

This work aimed at studying a possible influence of methylenetetrahydrofolate reductase (MTHFR; c. 677C>T) and cystathionine ß-synthase (CBS; 844ins68) polymorphisms on overall oxidative status of sickle cell anemia (SCA) patients and on routine markers, correlating them with hydroxycarbamide (HC) treatment. We evaluated 95 unrelated and diagnosed SCA patients. All patients received a prophylactic treatment with folic acid of 5mg/day, while 41 (43.2%) of them were under hydroxycarbamide (HC) treatment (average dose: 22mg/kg/day). MTHFR and CBS polymorphisms were identified by Polymerase Chain Reaction. Biochemical parameters were measured using spectrophotometric and chromatographic methods. Routine markers were developed by specialized laboratory. We did not find any effect of 677T and "I" allele combination on the biomarkers evaluated. On the other hand, MTHFR 677T mutation was related to a depletion of antioxidant capacity, according to the decreased catalase activity and a reduction about 30% of glutathione levels. Moreover, the presence of the insertion was related to about 23% less biomolecule oxidation levels and lower monocytes count, but about 14% higher lactate dehydrogenase activity. These findings may contribute to highlight that the MTHFR and CBS polymorphisms involvement in SCA pathophysiology is likely to be far more complex than it was explored to date.


Subject(s)
Anemia, Sickle Cell/genetics , Cystathionine beta-Synthase/genetics , Homocysteine/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Adolescent , Adult , Alleles , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/pathology , Child , Female , Folic Acid/administration & dosage , Genotype , Homocysteine/genetics , Humans , Male , Middle Aged , Oxidative Stress/drug effects , Oxidative Stress/genetics , Polymorphism, Genetic , Young Adult
13.
J Agric Food Chem ; 64(49): 9268-9275, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960295

ABSTRACT

Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.


Subject(s)
Diuron/metabolism , Fungi/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Biotransformation , Fungi/genetics , Fungi/isolation & purification , Saccharum/growth & development
14.
Cytokine ; 80: 18-25, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26928604

ABSTRACT

Sickle cell disease (SCD) represents a chronic inflammatory condition with complications triggered by the polymerization of hemoglobin S (Hb S), resulting in a series of cellular interactions mediated by inflammatory cytokines, as the transforming growth factor beta (TGF-ß), which plays an important role in inflammation resolution. This study assessed the relation between SCD inflammation and the plasma concentration of TGF-ß1, and also checked the influence of the presence of -509C/T polymorphism in TGFB1 gene on TGF-ß1 plasma values. The plasma levels of TGF-ß1 were quantified by ELISA in 115 patients with SCD (genotypes SS, SD-Los Angeles, Sß-thalassemia and SC) and in 58 individuals with no hemoglobinopathies (Hb AA), as the control group. The -509C/T polymorphism in TGFB1 gene was screened by PCR-RFLP. The correlation between TGF-ß1 plasma levels and the inflammation was based on its association with the count of platelets, total white blood cells (WBC) and neutrophils in the peripheral blood. Patients with SCD showed plasma levels of TGF-ß1 higher than the control group, especially the Hb SS genotype, followed by the group with Hb SD. Polymorphism investigation showed no interference in the values obtained for the cytokine in the groups evaluated. All SCD groups showed TGF-ß1 levels positively correlated to the platelets and WBC counts. The original data obtained in this study for SCD support the involvement of TGF-ß1 in regulating of the inflammatory response and suggest that this marker possibly may become a potential therapeutic target in the treatment of the disease.


Subject(s)
Anemia, Sickle Cell/immunology , Homeostasis , Inflammation/immunology , Transforming Growth Factor beta1/blood , Adolescent , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/therapy , Biomarkers/blood , Child , Female , Genetic Predisposition to Disease , Genotype , Humans , Leukocyte Count , Male , Middle Aged , Platelet Count , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/therapeutic use , Young Adult
15.
J Pineal Res ; 58(2): 178-88, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25545035

ABSTRACT

This study aimed to assess antioxidant effects of melatonin treatment compared to N-acetylcysteine (NAC) and to their combination in a sickle cell suspension. Sickle erythrocytes were suspended in phosphate-buffered saline, pH 7.4, composing external control group. They were also suspended and incubated at 37°C either in the absence (experimental control group) or in the presence of NAC, melatonin and their combination at concentrations of 100 pm, 100 nm and 100 µm for 1 hr (treatment groups). The melatonin influences were evaluated by spectrophotometric [hemolysis degree, catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), and superoxide dismutase (SOD) activities] and chromatographic methods [glutathione (GSH) and malondialdehyde (MDA) levels]. Incubation period was able to cause a rise about 64% on hemolysis degree as well as practically doubled the lipid peroxidation levels (P < 0.01). However, almost all antioxidants tested treatments neutralized this incubation effect observed in MDA levels. Among the antioxidant biomarkers evaluated, we observed a modulating effect of combined treatment on GPx and SOD activities (P < 0.01), which showed ~25% decrease in their activities. In addition, we found an antioxidant dose-dependent effect for melatonin on lipid peroxidation (r = -0.29; P = 0.03) and for combined antioxidant treatments also on MDA levels (r = -0.37; P = 0.01) and on SOD activity (r = -0.54; P < 0.01). Hence, these findings contribute with important insight that melatonin individually or in combination with NAC may be useful for sickle cell anemia management.


Subject(s)
Anemia, Sickle Cell/drug therapy , Antioxidants/therapeutic use , Melatonin/therapeutic use , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/metabolism , Catalase/blood , Female , Glutathione/blood , Glutathione Peroxidase/blood , Glutathione Reductase/blood , Hemoglobin, Sickle/metabolism , Humans , Lipid Peroxidation/drug effects , Male , Malondialdehyde/blood , Oxidative Stress/drug effects , Superoxide Dismutase/blood
16.
Biol Trace Elem Res ; 158(3): 399-409, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24723215

ABSTRACT

Manganese (Mn) exposure is related to industrial activities, where absorption by inhalation has high relevance. Manganism, a syndrome caused as a result of excessive accumulation of Mn in the central nervous system, has numerous symptoms similar to those seen in idiopathic Parkinson disease (IPD). Some of these symptoms, such as learning, memory, sensorial, and neurochemical changes, appear before the onset of motor deficits in both manganism and IPD. The aim of this study was to evaluate the possible neuroprotective effects of curcumin against behavioral deficits induced by Mn toxicity in young (2 months old) Swiss mice. We evaluated the effect of chronic inhalation of a Mn mixture [Mn(OAc)3 and MnCl2 (20:40 mM)], 1 h/session, three times a week, over a 14-week period on behavioral and neurochemical parameters. Curcumin was supplemented in the diet (500 or 1,500 ppm in food pellets). The Mn disrupted the motor performance evaluated in the single-pellet reach task, as well as the short- and long-term spatial memory evaluated in the step-down inhibitory avoidance task. Surprisingly, curcumin also produced similar deleterious effects in such behavioral tests. Moreover, the association of Mn plus curcumin significantly increased the levels of Mn and iron, and decreased the levels of dopamine and serotonin in the hippocampus. These alterations were not observed in the striatum. In conclusion, the current Mn treatment protocol resulted in mild deficits in motor and memory functions, resembling the early phases of IPD. Additionally, curcumin showed no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis.


Subject(s)
Curcumin/pharmacology , Hippocampus/drug effects , Manganese/pharmacology , Metals/metabolism , Neurotransmitter Agents/metabolism , Acetates/administration & dosage , Acetates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chlorides/administration & dosage , Chlorides/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Curcumin/administration & dosage , Dopamine/metabolism , Dose-Response Relationship, Drug , Drug Interactions , Hippocampus/metabolism , Iron/metabolism , Male , Manganese/administration & dosage , Manganese/metabolism , Manganese Compounds/administration & dosage , Manganese Compounds/pharmacology , Memory/drug effects , Mice , Motor Activity/drug effects , Serotonin/metabolism
17.
Chemosphere ; 93(2): 311-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23726006

ABSTRACT

Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL(-1) and 0.1mLL(-1) of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota.


Subject(s)
Biofuels/toxicity , Catfishes/metabolism , Environmental Pollutants/toxicity , Petroleum/toxicity , Animals , Biomarkers/metabolism , Dose-Response Relationship, Drug , Female , Gills/drug effects , Gills/enzymology , Gills/metabolism , Guanosine/analogs & derivatives , Guanosine/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/enzymology , Liver/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Time Factors
18.
Ann Hematol ; 91(4): 479-89, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21947087

ABSTRACT

To evaluate, in a longitudinal study, the profile of lipid peroxidation and antioxidant capacity markers in sickle cell anaemia patients receiving different treatments and medication over different time periods. The three groups were: patients undergoing transfusion therapy and receiving iron chelator deferasirox (DFX group, n = 20); patients receiving deferasirox and hydroxyurea (DFX + HU group, n = 10), and patients receiving only folic acid (FA group, n = 15). Thiobarbituric acid-reactive substance (TBARS) assays and trolox-equivalent antioxidant capacity (TEAC) assays were evaluated during two different periods of analysis, T0 and T1 (after ~388 days). Higher FA group TBARS values were observed compared with the DFX + HU group (p = 0.016) at T0; and at T1, higher FA group TBARS values were also observed compared with both the DFX group (p = 0.003) and the DFX + HU group (p = 0.0002). No variation in TEAC values was seen between groups, at either T0 or T1. The mean values of TBARS and TEAC for both the DFX and DFX + HU groups decreased at T1. The antioxidant effects of HU and DFX were observed by through an increase in TEAC levels in DFX and DFX + HU groups when compared with those of normal subjects. Increased TEAC values were not recorded in the FA group, and lipid peroxidation was seen to decrease after DFX and HU use.


Subject(s)
Anemia, Sickle Cell/drug therapy , Antioxidants/therapeutic use , Oxidative Stress/drug effects , Adolescent , Adult , Anemia, Sickle Cell/physiopathology , Antioxidants/pharmacology , Benzoates/pharmacology , Benzoates/therapeutic use , Biomarkers/metabolism , Blood Transfusion , Child , Deferasirox , Female , Humans , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Lipid Peroxidation/drug effects , Longitudinal Studies , Male , Middle Aged , Thiobarbituric Acid Reactive Substances/metabolism , Triazoles/pharmacology , Triazoles/therapeutic use , Young Adult
19.
Rev Bras Hematol Hemoter ; 34(6): 421-5, 2012.
Article in English | MEDLINE | ID: mdl-23323065

ABSTRACT

OBJECTIVE: The oxidative stress in 20 sickle cell anemia patients taking hydroxyurea and 13 sickle cell anemia patients who did not take hydroxyurea was compared with a control group of 96 individuals without any hemoglobinopathy. METHODS: Oxidative stress was assessed by thiobarbituric acid reactive species production, the Trolox-equivalent antioxidant capacity and plasma glutathione levels. RESULTS: Thiobarbituric acid reactive species values were higher in patients without specific medication, followed by patients taking hydroxyurea and the Control Group (p < 0.0001). The antioxidant capacity was higher in patients taking hydroxyurea and lower in the Control Group (p = 0.0002 for Trolox-equivalent antioxidant capacity and p < 0.0292 for plasma glutathione). Thiobarbituric acid reactive species levels were correlated with higher hemoglobin S levels (r = 0.55; p = 0.0040) and lower hemoglobin F concentrations(r = -0.52; p = 0.0067). On the other hand, plasma glutathione levels were negatively correlated with hemoglobin S levels (r = -0.49; p = 0.0111) and positively associated with hemoglobin F values (r = 0.56; p = 0.0031). CONCLUSION: Sickle cell anemia patients have high oxidative stress and, conversely, increased antioxidant activity. The increase in hemoglobin F levels provided by hydroxyurea and its antioxidant action may explain the reduction in lipid peroxidation and increased antioxidant defenses in these individuals.

20.
Chemosphere ; 85(1): 97-105, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21683976

ABSTRACT

Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1 mL L(-1). The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota.


Subject(s)
Biofuels/toxicity , Gasoline/toxicity , Oxidative Stress , Tilapia/metabolism , Animals , Catalase/metabolism , Cytochrome P-450 CYP1A1/metabolism , Gills/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...