Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 41(5-6): 278-286, 2020 03.
Article in English | MEDLINE | ID: mdl-31529502

ABSTRACT

This paper describes the development of a novel, simple, and inexpensive electrochemical device containing an integrated and disposable three-electrode system for detection. The base of this platform consists on a PDMS structure containing microchannels which were prototyped using 3D-printed molds. Pencil graphite leads were inserted into these microchannels and utilized as working, counter and reference electrodes in a novel design. Morphological analysis and electrochemical experiments with benchmark redox probes were carried out in order to evaluate the performance and characterize the miniaturized device proposed. Even using inexpensive materials and a simple fabrication protocol, the electrochemical platform developed provided good repeatability and reproducibility over a low cost (ca. $2 per device), acceptable lifetime (ca. 250 voltammetric runs) and extremely reduced consumption of samples and reagents (order of µL). As proof of concept, the analytical feasibility of the platform was investigated through the simultaneous determination of dopamine (DOPA) and acetaminophen (AC). The two analytes showed linear dependence on the concentration range from 1 to 15 µM and the LODs achieved were 0.21 µM for DOPA and 0.29 µM for AC. Moreover, the platform was successfully applied on the determination of DOPA and AC in spiked blood serum and urine samples. The results obtained with the device described here were better than some reports in literature that use more costly electrodic materials and complex modification steps for the detection of the same analytes.


Subject(s)
Electrochemical Techniques/instrumentation , Printing, Three-Dimensional , Acetaminophen/blood , Disposable Equipment , Dopamine/blood , Electrochemical Techniques/economics , Electrochemical Techniques/methods , Electrodes , Equipment Design/methods , Equipment Reuse , Graphite/chemistry , Humans , Limit of Detection , Reproducibility of Results
2.
Electrophoresis ; 40(9): 1322-1330, 2019 05.
Article in English | MEDLINE | ID: mdl-30657598

ABSTRACT

The fabrication of PDMS microfluidic structures through soft lithography is widely reported. While this well-established method gives high precision microstructures and has been successfully used for many researchers, it often requires sophisticated instrumentation and expensive materials such as clean room facilities and photoresists. Thus, we present here a simple protocol that allows the rapid molding of simple linear microchannels in PDMS substrates aiming microfluidics-based applications. It might serve as an alternative to researchers that do not have access to sophisticated facilities such as clean rooms. The method developed here consists on the use of pencil graphite leads as template for the molding of PDMS channels. It yields structures that can be used for several applications, such as housing support for electrochemical sensors or channels for flow devices. Here, the microdevices produced through this protocol were employed for the accommodation of carbon black paste, which was utilized for the first time as amperometric sensor in microchip electrophoresis. This platform was successfully used for the separation and detection of model analytes. Ascorbic acid and iodide were separated within 45 s with peak resolution of 1.2 and sensitivities of 198 and 492 pA/µM, respectively. The background noise was ca. 84 pA. The analytical usefulness of the system developed was successfully tested through the quantification of iodide in commercial pharmaceutical formulations. It demonstrates good efficiency of the microfabrication protocol developed and enables its use for the easy and rapid prototyping of PDMS structures over a low fabrication cost.


Subject(s)
Microfluidics/instrumentation , Dimethylpolysiloxanes , Electrophoresis, Microchip/instrumentation , Electrophoresis, Microchip/methods , Equipment Design , Graphite , Microfluidics/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...