Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 18: 1524-1531, 2022.
Article in English | MEDLINE | ID: mdl-36447520

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants. Currently, ribavirin, a nucleoside analog containing a 1,2,4-triazole-3-carboxamide moiety, is a first-line drug for its treatment, however, its clinical use has been limited due to its side effects. Here, we designed two new nitroaryl-1,2,3-triazole triterpene derivatives as novel anti-RSV drugs. Their anti-RSV and cytotoxic activity were evaluated in vitro, RSV protein F gene effects by RT-PCR and molecular modeling with inosine monophosphate dehydrogenase (IMPDH) were performed. Compound 8 was the best performing compound, with an EC50 value of 0.053 µM, a TI of 11160.37 and it inhibited hRSV protein F gene expression by approximately 65%. Molecular docking showed a top-ranked solution located in the same region occupied by crystallographic ligands in their complex with IMPDH. The results obtained in this study suggest that compound 8 might be a new anti-RSV candidate.

2.
Chem Biol Interact ; 344: 109535, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34051208

ABSTRACT

Imatinib, a specific Bcr-Abl tyrosine kinase inhibitor, is the most commonly used drug in the treatment of chronic myeloid leukemia. However, optimal response is not achieved in up to 33% of patients. Therefore, development of novel therapeutic strategies for chronic myeloid leukemia is critical. Betulinic (1) and ursolic (2) acids are natural pentacyclic triterpenes that exhibit antileukemic activities. In this study, we evaluated the effects of pharmacomodulations at the C-3 position of the triterpene moiety of betulinic and ursolic acids on their activity against K562 leukemia cells. Six new derivatives (1a-2c) were synthesized and evaluated for pro-apoptotic and anti-proliferative effects in mammalian and leukemic cells. 2c derivative containing an amine group at the C-3 position of ursolic acid was the most active against leukemia cells with an IC50 value of 5.2 µM after 48 h of treatment. 2c did not exhibit cytotoxic effects against VERO and HepG2 cells and human lymphocytes, showing a good selectivity index for cancer over normal cells. Induced cell death by apoptosis via caspases 3 and 8, and also caused cell cycle arrest as evidenced by accumulation of cells in the G1 phase and decreased cell population in the G2 phase. Furthermore, co-treatment of 2c with imatinib, the chemotherapy drug most commonly used to treat leukemia, resulted in a synergistic effect. Our findings provide a strong rationale for further investigation of combination therapy using the 2c derivative and imatinib in pre-clinical studies.


Subject(s)
Antineoplastic Agents/pharmacology , Imatinib Mesylate/pharmacology , Triterpenes/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Drug Screening Assays, Antitumor , Drug Synergism , G1 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Triterpenes/chemical synthesis , Vero Cells , Ursolic Acid
3.
Chem Biol Interact ; 287: 70-77, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29604267

ABSTRACT

Malaria is one of the most significant infectious diseases that affect poor populations in tropical areas throughout the world. Plants have been shown to be a good source for the development of new antimalarial chemotherapeutic agents, as shown for the discovery of quinine and artemisinin derivatives. Our research group has been working with semisynthetic triterpene derivatives that show potential antimalarial activity toward different strains of Plasmodium falciparum by specifically modulating calcium pathways in the parasite. Promising results were obtained for nanomolar concentrations of the semisynthetic betulinic acid derivative LAFIS13 against the P. falciparum 3D7 strain in vitro, with a selectivity index of 18 compared to a mammalian cell line. Continuing these studies, we present here in vitro and in vivo toxicological evaluations of this compound, followed by docking studies with PfATP6, a sarco/endoplasmic reticulum Ca+2-ATPase (SERCA) protein. LAFIS13 showed an LD50 between 300 and 50 mg/kg, and the acute administration of 50 mg/kg (i.p.) had no negative effects on hematological, biochemical and histopathological parameters. Based on the results of the in vitro assays, LAFIS13 not exerted significant effects on coagulation parameters of human peripheral blood, but a hemolytic activity was verified at higher concentrations. According to the molecular docking study, the PfATP6 protein may be a target for LAFIS13, which corroborates its previously reported modulatory effects on calcium homeostasis in the parasite. Notably, LAFIS13 showed a higher selectivity for the mammalian SERCA protein than for PfATP6, thus impairing the selectivity between parasite and host. In summary, the direct interaction with calcium pumps and the hemolytic potential of the compound proved to be plausible mechanism of LAFIS13 toxicity.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/toxicity , Binding Sites , Biomarkers/blood , Blood Coagulation/drug effects , Brain/drug effects , Brain/pathology , Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/metabolism , Female , Humans , Kidney/drug effects , Kidney/pathology , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Pentacyclic Triterpenes , Plasmodium falciparum/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Thermodynamics , Triterpenes/toxicity , Betulinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...