Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1261174, 2023.
Article in English | MEDLINE | ID: mdl-37731978

ABSTRACT

Urban vertical agriculture with lighting system can be an alternative green infrastructure to increase local food production irrespective of environmental and soil conditions. In this system, light quality control can improve the plant physiological performance, well as induce metabolic pathways that contribute to producing phenolic compounds important to human health. Therefore, this study aimed to evaluate the influence of RBW (red, blue and white) and monochromatic (red and blue; R and B, respectively) light associated or not with UV-B on photosynthetic performance and phenolic compound production in microtomato fruits cultivated via vertical agriculture. The experimental design adopted was completely randomized, with six replicates illuminated with 300 µmol·m-2·s-1 light intensities (RBW, RBW + UV, B, B + UV, R, and R + UV), 12 h photoperiod, and 3.7 W·m-2 UV-B irradiation for 1 h daily for the physiological evaluations. Twenty-six days after the installation, gas exchange, chlorophyll a fluorescence and nocturnal breathing were evaluated. Fruits in different ripening stages (green, orange, and red) were collected from microtomato plants grown under with different light qualities, to evaluate the physiological performance. The identification and quantification of the phenolic compound rutin was also performed to investigate their metabolic response. This study identified that plants grown under B + UV had high photosynthetic rates (A=11.57 µmol·m-2·s-1) and the fruits at all maturation stages from plants grown under B and B + UV had high rutin content. Meanwhile, the activation of suppressive mechanisms was necessary in plants grown under R because of the high nocturnal respiration and unregulated quantum yield of the non-photochemical dissipation of the photosystem II. These results highlight the importance of selecting light wavelength for vegetable cultivation to produce fruits with a high content of specialized metabolites that influence color, flavor, and health promotion, which is of special interest to farmers using sustainable cropping systems.

2.
Physiol Plant ; 168(2): 456-472, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31600428

ABSTRACT

Soybean is the most widely grown oilseed in the world. It is an important source of protein and oil which are derived from its seeds. Drought stress is a major constraint to soybean yields. Finding alternative methods to mitigate the water stress for soybean is useful to maintain adequate crop yields. The aim of this study was to evaluate the morpho-physiological, biochemical and metabolic changes in soybean plants in two ontogenetic stages, under exposure to water deficit and treatment with zinc sulphate (ZS), potassium phosphite (PP) or hydrogen sulphide (HS). We carried out two independent experiments in the V4 and R1 development stages consisting of the following treatments: well-watered control (WW, 100% maximum water holding capacity, MWHC), water deficit (WD, 50% MWHC), PP + WW, PP + WD, HS + WW, HS + WD, ZS + WW and ZS + WD. The experimental design consisted of randomized blocks with eight treatments with five replicates. Morphological, physiological and metabolic analyses were performed 8 days after the start of the treatments for both experiments. We identified two tolerance mechanisms acting in response to compound application during water stress: the first involved the upregulation of antioxidant enzyme activity and the second involved the accumulation of soluble sugars, free amino acids and proline to facilitate osmotic adjustment. Both mechanisms are related to the maintenance of the photosynthetic parameters and cell membrane integrity. This report suggests the potential agricultural use of these compounds to mitigate drought effects in soybean plants.


Subject(s)
Glycine max/drug effects , Hydrogen Sulfide/pharmacology , Phosphites/pharmacology , Potassium Compounds/pharmacology , Stress, Physiological , Zinc Sulfate/pharmacology , Droughts , Plant Leaves , Glycine max/physiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...