Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Mar Drugs ; 19(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922065

ABSTRACT

Schistosomiasis is a parasitic disease that affects more than 250 million people. The treatment is limited to praziquantel and the control of the intermediate host with the highly toxic molluscicidal niclosamide. Marine algae are a poorly explored and promising alternative that can provide lead compounds, and the use of multivariate analysis could contribute to quicker discovery. As part of our search for new natural compounds with which to control schistosomiasis, we screened 45 crude extracts obtained from 37 Brazilian seaweed species for their molluscicidal activity against Biomphalaria glabrata embryos and schistosomicidal activities against Schistosoma mansoni. Two sets of extracts were taxonomically grouped for metabolomic analysis. The extracts were analyzed by GC-MS, and the data were subjected to Pattern Hunter and Pearson correlation tests. Overall, 22 species (60%) showed activity in at least one of the two models. Multivariate analysis pointed towards 3 hits against B. glabrata veliger embryos in the Laurencia/Laurenciella set, 5 hits against B. glabrata blastula embryos, and 31 against S. mansoni in the Ochrophyta set. Preliminary annotations suggested some compounds such as triquinane alcohols, prenylated guaianes, dichotomanes, and xenianes. Despite the putative identification, this work presents potential candidates and can guide future isolation and identification.


Subject(s)
Biomphalaria/drug effects , Bioprospecting , Drug Discovery , Molluscacides/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/prevention & control , Schistosomicides/pharmacology , Seaweed/metabolism , Animals , Biomphalaria/parasitology , Brazil , Metabolome , Metabolomics , Molluscacides/isolation & purification , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/parasitology , Schistosomicides/isolation & purification
2.
Plant Dis ; 98(6): 771-779, 2014 Jun.
Article in English | MEDLINE | ID: mdl-30708630

ABSTRACT

Cassava frogskin disease (CFSD) is a particular threat in cassava because symptoms remain hidden until harvest and losses can be total. The information related to the etiological agent of this disease is contradictory, because some authors believe it is caused by phytoplasmas while others believe that it is caused by a virus. In order to refine detection protocols and to characterize organisms associated with CFSD in Brazil, 32 symptomatic and 20 asymptomatic cassava plants were collected in Minas Gerais state. Total DNA was extracted and used for nested polymerase chain reaction (PCR) to detect phytoplasmas. Because endophytic Bacillus spp. led to false positives, primers were designed to facilitate the detection of phytoplasma in the presence of bacteria. In addition, double-stranded (ds)RNA was extracted from tubers and used in reverse-transcription PCR for the detection of the RNA-dependent RNA polymerase gene from Cassava frogskin virus segment 4. The detected phytoplasma was identified as belonging to the group 16SrIII-A by restriction fragment length polymorphism (RFLP), sequencing, and RFLP in silico. This is the first report of a phytoplasma belonging to the 16SrIII-A group associated with cassava plants, the first molecular characterization of a phytoplasma associated with CFSD in Brazil, and a first report of phytoplasma and a dsRNA virus (possible reovirus) co-infecting cassava plants with CFSD symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL