Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(24): 4795-4805, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38860325

ABSTRACT

Propylene oxide, CH3CHOCH2, is the first chiral molecule detected in space and the third C3 oxide detected toward the Sagittarius B2 (Sgr B2 (N)) molecular cloud, the others being propanal, CH3CH2CHO, and acetone, (CH3)2CO. With homochirality being ubiquitous in the building blocks of living matter, the formation and decay paths of propylene oxide in space are of specific interest. Motivated by the significant role of photo- and secondary electrons in astrochemistry, we have studied electron ionization and fragmentation of propylene oxide. Ion appearance energies are determined and compared to threshold values for the respective processes calculated at the G4MP2 level of theory, and potential reaction pathways are computed at the DFT level of theory. Electron ionization is found to destabilize propylene oxide, leading to barrierless opening of the C1-C2 bond of the epoxy ring, hydrogen transfer, and fragmentation over the methyl vinyl ether or rupture of the C2-O bond of the epoxy ring and fragmentation of the allyl alcohol cation as an intermediate, rather than direct bond ruptures.

2.
J Phys Chem A ; 120(45): 8998-9007, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27766869

ABSTRACT

Here we report novel comprehensive investigations on the electronic state spectroscopies of isolated 2,4- and 2,6-difluorotoluene in the gas phase by high-resolution vacuum ultraviolet (VUV) photoabsorption measurements in the 4.4-10.8 eV energy range, with absolute cross-section values derived. We also present the first set of ab initio calculations (vertical energies and oscillator strengths), which we have used in the assignment of valence transitions of the difluorotoluene molecules, together with calculated ionization energies to obtain the Rydberg transitions for both molecules. The measured absolute photoabsorption cross sections have been used to estimate the photolysis lifetimes of 2,4- and 2,6-difluorotoluene in the Earth's atmosphere.

3.
EPJ Tech Instrum ; 2(1): 13, 2015.
Article in English | MEDLINE | ID: mdl-26322266

ABSTRACT

We report a novel experimental setup for studying collision induced products resulting from the interaction of anionic beams with a neutral gas-phase molecular target. The precursor projectile was admitted into vacuum through a commercial pulsed valve, with the anionic beam produced in a hollow cathode discharge-induced plasma, and guided to the interaction region by a set of deflecting plates where it was made to interact with the target beam. Depending on the collision energy regime, negative and positive species can be formed in the collision region and ions were time-of-flight (TOF) mass-analysed. Here, we present data on O2 precursor projectile, where we show clear evidence of O- and O2- formation from the hollow cathode source as well as preliminary results on the interaction of these anions with nitromethane, CH3NO2. The negative ions formed in such collisions were analysed using time-of-flight mass spectrometry. The five most dominant product anions were assigned to H-, O-, NO-, CNO- and CH3NO2-.

4.
J Phys Chem A ; 119(34): 9059-69, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26244250

ABSTRACT

The electronic spectroscopy of isolated toluene in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 4.0-10.8 eV energy range, with absolute cross-section measurements derived. We present the first set of ab initio calculations (vertical energies and oscillator strengths), which we use in the assignment of valence and Rydberg transitions of the toluene molecule. The spectrum reveals several new features not previously reported in the literature, with particular relevance to 7.989 and 8.958 eV, which are here tentatively assigned to the π*(17a') ← σ(15a') and 1π*(10a″) ← 1π(14a') transitions, respectively. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of toluene in the upper stratosphere (20-50 km).


Subject(s)
Electrons , Quantum Theory , Synchrotrons , Toluene/chemistry , Ultraviolet Rays , Absorption, Radiation , Atmosphere , Photolysis , Spectrophotometry, Ultraviolet , Vacuum
5.
J Phys Chem A ; 119(31): 8503-11, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26171941

ABSTRACT

We present the first set of ab initio calculations (vertical energies and oscillator strengths) of the valence and Rydberg transitions of the anaesthetic compound halothane (CF3CHBrCl). These results are complemented by high-resolution vacuum ultraviolet photoabsorption measurements over the wavelength range 115-310 nm (10.8-4.0 eV). The spectrum reveals several new features that were not previously reported in the literature. Spin-orbit effects have been considered in the calculations for the lowest-lying states, allowing us to explain the broad nature of the 6.1 and 7.5 eV absorption bands assigned to σ*(C-Br) ← nBr and σ*(C-Cl) ← n(Cl) transitions. Novel absolute photoabsorption cross sections from electron scattering data were derived in the 4.0-40.0 eV range. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of halothane in the upper stratosphere (20-50 km).


Subject(s)
Electrons , Halothane/chemistry , Quantum Theory , Ultraviolet Rays , Photoelectron Spectroscopy , Synchrotrons , Vacuum
6.
J Phys Chem A ; 118(33): 6547-52, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24818533

ABSTRACT

We report experimental and theoretical studies on ring cleavage enhancement in collisions of potassium atoms with uracil/thymine to further increase the understanding of the complex mechanisms yielding such fragmentation pathways. In these electron transfer processes time-of-flight (TOF) negative ion mass spectra were obtained in the collision energy range 13.5-23.0 eV. We note that CNO(-) is the major ring breaking anion formed and its threshold formation is discussed within the collision energy range studied. Such a decomposition process is supported by the first theoretical calculations to clarify how DNA/RNA pyrimidine base fragmentation is enhanced in electron transfer processes yielding ion-pair formation.


Subject(s)
Potassium/chemistry , Quantum Theory , Thymine/chemistry , Uracil/chemistry , DNA/chemistry , Electron Transport , Pyrimidines/chemistry , RNA/chemistry
7.
J Chem Phys ; 139(18): 184310, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24320277

ABSTRACT

Total electron scattering cross sections for pyrazine in the energy range 10-500 eV have been measured with a new magnetically confined electron transmission-beam apparatus. Theoretical differential and integral elastic, as well as integral inelastic, cross sections have been calculated by means of a screening-corrected form of the independent-atom representation (IAM-SCAR) from 10 to 1000 eV incident electron energies. The present experimental and theoretical total cross sections show a good level of agreement, to within 10%, in the overlapping energy range. Consistency of these results with previous calculations (i.e., the R-matrix and Schwinger Multichannel methods) and elastic scattering measurements at lower energies, below 10 eV, is also discussed.


Subject(s)
Electrons , Pyrazines/chemistry , Quantum Theory , Molecular Structure
8.
Phys Chem Chem Phys ; 13(26): 12305-13, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21647492

ABSTRACT

Dissociative electron attachment (DEA) to gaseous formamide, HCONH(2), has been investigated in the energy range between 0 eV and 18 eV using a crossed electron/molecule beam technique. The negative ion fragments have been comprehensively monitored and assigned to molecular structures by comparison with the results for two differently deuterated derivatives, namely 1D-formamide, DCONH(2), and N,N,D-formamide, HCOND(2). The following products were observed: HCONH(-), CONH(2)(-), HCON(-), OCN(-), HCNH(-), CN(-), NH(2)(-)/O(-), NH(-), and H(-). NH(2)(-) was also separated from O(-) by using high-resolution negative ion mass spectrometry. Four resonant dissociation channels can be resolved, the strongest ones being located between 2.0 and 2.7 eV and between 6.0 and 7.0 eV. CN(-) as the most abundant fragment and HCONH(-) are the dominant products of the first of these two resonances. The most important products of the latter resonance are NH(2)(-), CN(-), H(-), CONH(2)(-), and OCN(-). It is thus found that the loss of neutral H is a site-selective process, dissociation from the N site taking place between 2.0 and 2.7 eV while dissociation from the C site occurs between 6.0 and 7.0 eV. The suitability of these reactions and thus of formamide as an agent for electron-induced surface functionalisation is discussed.

9.
Phys Chem Chem Phys ; 12(25): 6717-31, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20428528

ABSTRACT

The electronic state spectroscopy of pyrimidine C(4)H(4)N(2) has been investigated using both high resolution VUV photoabsorption in the energy range 3.7 to 10.8 eV (335 to 115 nm) and lower resolution electron energy loss in the range 2 to 15 eV. The low energy absorption band, assigned to the (pi*) <-- 7b(2)(n(N)) (1(1)B(1)<-- 1(1)A(1)) transition, at 3.85(4) eV and the vibrational progressions superimposed upon it have been observed for the first time, due to the availability of a high-resolution photon beam (0.075 nm), corresponding to 3 meV at the midpoint of the energy range studied. Vibronic coupling has been shown to play an important role dictating the nature of the observed excited states, especially for the lowest (1)B(1) state. The 2(1)B(1) state is proposed to have its origin at 7.026 eV according to the vibrational excitation reported in this energy region (7.8-8.4 eV). New experimental evidence of 4(1)A(1) state with a maximum cross section at 8.800 eV is supported by previous ab initio quantum chemical calculations. Rydberg series have been assigned converging to the three lowest ionisation energy limits, 9.32 eV ((2)B(2)), 10.41 eV ((2)B(1)) and 11.1 eV ((2)A(1) + (2)A(2)) with new members reported for the first time and classified according to the magnitude of the quantum defects (delta). Additionally, the absolute differential cross section for inelastic electron scattering has been measured for the most intense band from 6.9 to 7.8 eV assigned to (1)pipi* (3(1)A(1) + 2(1)B(2)).

10.
J Chem Phys ; 129(22): 224306, 2008 Dec 14.
Article in English | MEDLINE | ID: mdl-19071915

ABSTRACT

Neutral hydrogen clusters are grown in ultracold helium nanodroplets by successive pickup of hydrogen molecules. Even-numbered hydrogen cluster cations are observed upon electron-impact ionization with and without attached helium atoms and in addition to the familiar odd-numbered H(n)(+). The helium matrix affects the fragmentation dynamics that usually lead to the formation of overwhelmingly odd-numbered H(n)(+). The use of high-resolution mass spectrometry allows the unambiguous identification of even-numbered H(n)(+) up to n approximately = 120 by their mass excess that distinguishes them from He(n)(+), mixed He(m)H(n)(+), and background ions. The large range in size of these hydrogen cluster ions is unprecedented, as is the accuracy of their definition. Apart from the previously observed magic number n=6, pronounced drops in the abundance of even-numbered cluster ions are seen at n=30 and 114, which suggest icosahedral shell closures at H(6)(+)(H(2))(12) and H(6)(+)(H(2))(54). Possible isomers of H(6)(+) are identified at the quadratic configuration interaction with inclusion of single and double excitations (QCISD)/aug-cc-pVTZ level of theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...