Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 14(1): 166, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31102112

ABSTRACT

For many cancers, early detection is the key to improve survival and reduce the morbidity, which is associated with radical resections due to late diagnosis. Here, we describe the efficiency of primary antibody-conjugated gold nanoparticles (AuNPs) to specifically target chronic inflammatory processes, specially M2 macrophages, in tissue sections of ulcerative colitis (UC) and steatohepatitis in rats which may lead to colorectal cancer and liver carcinoma, respectively. In this study, we demonstrate that AuNPs synthesized by a simple, inexpensive, and environmentally compatible method can be easily conjugated with the antibodies anti-COX-2, anti-MIF, and Alexa Fluor® 488 (ALEXA) to perform immunofluorescence staining in inflamed tissues. Moreover, we showed that primary antibody-conjugated gold nanoparticles (AuNPs) can be used to target M2 macrophages by flow cytometry. We designed three immunofluorescence staining protocols of tissue section with AuNPs for 30 min and overnight incubation, as well as one flow cytometry protocol of M2 macrophage labeling with AuNPs for 30 min. Immunofluorescence and flow cytometry results suggest that conjugation was achieved by direct adsorption of antibodies on the AuNPs surface. When compared to the standard ALEXA protocol in immunofluorescence (IF) and flow cytometry (FC), our 30-min incubation protocol using AuNPs instead of ALEXA decreased from approximately 23 h to 5 h for IF and from 4 h to 1 h for FC, proving to be less laborious, which makes the method eligible for inflammation-induced cancer diagnostic.

2.
Biophys Chem ; 238: 22-29, 2018 07.
Article in English | MEDLINE | ID: mdl-29723717

ABSTRACT

Understanding the interactions between nanoparticles and biological surfaces is of great importance for many areas of nanomedicine and calls for detailed studies at the molecular level using simplified models of cellular membranes. In this paper, water-dispersed polyvinylpyrrolidonestabilized gold nanoparticles (AuNPs) were incorporated in floating monolayers of selected lipids at the air-water interface as cell membrane models. Surface pressure-area isotherms showed the condensation of glycoside-free lipid monolayers, suggesting their adsorption on the nanoparticle surface through the hydrophilic head groups. On the other hand, monolayers containing glycoside derivatives expanded upon AuNPs incorporation, pointing that the supramolecular structure formed should facilitate the incorporation of these nanoparticles in cellular membranes. These findings can be therefore correlated with the possible toxicity, microbicide and antitumorigenic effects of these nanoparticles in lipidic surfaces of erythrocyte and microbial membranes.


Subject(s)
Air , Cell Membrane/chemistry , Gold/chemistry , Lipopolysaccharides/chemistry , Metal Nanoparticles/chemistry , Peptidoglycan/chemistry , Water/chemistry , Models, Chemical , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...