Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(25): 4136-4142, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38860551

ABSTRACT

The ivermectin (IVM), as a broad-spectrum antiparasitic drug, was widely prescribed to treat COVID-19 during the pandemic, despite lacking proven efficacy in combating this disease. Therefore, it is important to establish affordable devices in laboratories with minimal infrastructure. The laser engraving technology has been revolutionary in sensor manufacturing, primarily attributed to the diversity of substrates that can be employed and the freedom it provides in creating sensor models. In this work, electrochemical sensors based on graphene were developed using the laser engraving technology for IVM sensing. Through, the studies that used the techniques of cyclic voltammetry and differential pulse voltammetry, following parameter optimization, for the laser-induced graphene electrode demonstrated a mass transport governed by adsorption of the species and exhibited a linear working range of 10-100 (µmol L-1), a limit of detection (LOD) of 1.6 × 10-6 (mol L-1), a limit of quantification (LOQ) of 4.8 × 10-6 (mol L-1), and a sensitivity of 0.139 (µA µmol L-1). The developed method was successfully applied to direct analysis of pharmaceutical tablets, tap water (recovery of 94%) and synthetic urine samples (recovery between 97% and 113%). These results demonstrate the feasibility of the method for routine analyses involving environmental samples.


Subject(s)
Electrochemical Techniques , Graphite , Ivermectin , Lasers , Ivermectin/analysis , Ivermectin/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Graphite/chemistry , Humans , Limit of Detection , Antiparasitic Agents/urine , Antiparasitic Agents/analysis , Antiparasitic Agents/chemistry , Electrodes , COVID-19 , SARS-CoV-2
2.
Talanta ; 259: 124536, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37062090

ABSTRACT

Antibiotics such as tetracycline (TC) are widely prescribed to treat humans or dairy animals. Therefore, it is important to establish affordable devices in laboratories with minimal infrastructure. 3D printing has proven to be a powerful and cost-effective tool that revolutionizes many applications in electrochemical sensing. In this work, we employ a conductive filament based on graphite (Gr) and polylactic acid (PLA) (40:60; w/w; synthesized in our lab) to manufacture 3D-printed electrodes. This electrode was used "as printed" and coupled to batch injection analysis with amperometric detection (BIA-AD) for TC sensing. Preliminary studies by cyclic voltammetry and differential pulse voltammetry revealed a mass transport governed by adsorption of the species and consequent fouling of the redox products on the 3D printed surface. Thus, a simple strategy (solution stirring and application of successive potentials, +0.95 V followed by +1.2 V) was associated with the BIA-AD system to solve this effect. The proposed electrode showed analytical performance comparable to costly conventional electrodes with linear response ranging from 0.5 to 50 µmol L-1 and a detection limit of 0.19 µmol L-1. Additionally, the developed method was applied to pharmaceutical, tap water, and milk samples, which required minimal sample preparation (simple dilution). Recovery values of 92-117% were obtained for tap water and milk samples, while the content found of TC in the capsule was close to the value reported by the manufacturer. These results indicate the feasibility of the method for routine analysis involving environmental, pharmaceutical, and food samples.


Subject(s)
Laboratories , Tetracycline , Animals , Humans , Anti-Bacterial Agents , Printing, Three-Dimensional , Electrodes , Water , Pharmaceutical Preparations , Electrochemical Techniques
3.
Talanta ; 250: 123727, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35850056

ABSTRACT

Although studies have demonstrated the inactivity of hydroxychloroquine (HCQ) towards SARS-CoV-2, this compound was one of the most prescribed by medical organizations for the treatment of hospitalized patients during the coronavirus pandemic. As a result of it, HCQ has been considered as a potential emerging contaminant in aquatic environments. In this context, we propose a complete electrochemical device comprising cell and working electrode fabricated by the additive manufacture (3D-printing) technology for HCQ monitoring. For this, a 3D-printed working electrode made of a conductive PLA containing carbon black assembled in a 3D-printed cell was associated with square wave voltammetry (SWV) for the fast and sensitive determination of HCQ. After a simple surface activation procedure, the proposed 3D-printed sensor showed a linear response towards HCQ detection (0.4-7.5 µmol L-1) with a limit of detection of 0.04 µmol L-1 and precision of 2.4% (n = 10). The applicability of this device was shown to the analysis of pharmaceutical and water samples. Recovery values between 99 and 112% were achieved for tap water samples and, in addition, the obtained concentration values for pharmaceutical tablets agreed with the values obtained by spectrophotometry (UV region) at a 95% confidence level. The proposed device combined with portable instrumentation is promising for on-site HCQ detection.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine , Electrodes , Humans , Hydroxychloroquine/analysis , Polyesters , SARS-CoV-2 , Soot , Tablets/chemistry , Water
4.
Metallomics ; 5(3): 259-64, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23443273

ABSTRACT

The misfolding of amyloid-beta (Aß) peptide is one of the pathological hallmarks of Alzheimer's disease (AD). Polyphenols are strong antioxidants and metal chelators, with characteristics that are of beneficial therapeutic values for their development as candidates targeting neurodegenerative and metal-induced diseases. We have demonstrated here the electrochemical properties of a green tea component, (-)-epigallocatechin-3-gallate (EGCG), and its potent activity on Aß peptides. Characterization of early interactions (≤48 h) between EGCG and Aß was conducted using square wave voltammetry (SWV). The interaction of Cu(ii) ions with the Tyr-10 residue of Aß was shown to be affected by surrounding His residues. Morphological changes due to the binding of EGCG and Cu(II) were also elucidated using transmission electron microscopy (TEM). Electroanalytical techniques are promising for facilitating the investigation of metals and flavonoids in drug screening studies.


Subject(s)
Amyloid beta-Peptides/chemistry , Catechin/analogs & derivatives , Copper/chemistry , Catechin/chemistry , Copper/pharmacology , Microscopy, Electron, Transmission , Protein Binding/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...