Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 308(Pt 3): 136468, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36116622

ABSTRACT

Glyphosate excessive use is reported in Brazilian citrus orchards, whereas there is speculation about its consequences and the published studies are contradictory and inconclusive. This study aimed to describe the possible harmful effects by simulating glyphosate drift directly to the leaves of ∼4-yr-old citrus plants. As major results, glyphosate doses >360 g ae ha-1 increased the shikimate accumulation in leaves (up to 2.3-times above control), which was increased after a second glyphosate application (up to 3.5-times above control), even after a 240-d interval. Interestingly, shikimate accumulation was occasionally related to a dose-response of the herbicide at specific times; however, the doses had their accumulation peak on determined dates. These accumulations were directly correlated to reduced net photosynthesis even months after the glyphosate sprays. Quantum productivity based on electron transport through the photosystem II and apparent electron transport reductions up to 17% were also observed during the entire experiment course. Similarly, quantum productivity based on CO2 assimilation of glyphosate sprayed leaves decreased up to four times compared to the control after the second application. Glyphosate doses >360 g ae ha-1 increased stomatal conductance and transpiration as the carboxylation efficiency decreased, evidencing a carbon drainage in the Calvin-Benson cycle. These metabolic and physiological disturbances suggest possible photooxidative damage and an increase in photorespiration, which may be a mitigation strategy by the citrus plants to glyphosate effects, by the cost of reducing the citrus fruit yield (up to 57%). It is concluded that glyphosate phytotoxicity damages citrus plants over time due to chronic disturbances in the shikimate pathway and photosynthesis, even when there are no symptoms. This study is the first report to demonstrate how glyphosate damages citrus trees beyond the shikimate pathway.


Subject(s)
Citrus , Herbicides , Carbon/pharmacology , Carbon Dioxide/metabolism , Glycine/analogs & derivatives , Herbicides/toxicity , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Shikimic Acid/metabolism , Trees/metabolism , Glyphosate
2.
Front Plant Sci ; 12: 731314, 2021.
Article in English | MEDLINE | ID: mdl-34721459

ABSTRACT

This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB-) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.

3.
AoB Plants ; 11(2): plz013, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30949326

ABSTRACT

Golden genotype of papaya (Carica papaya), named for its yellowish leaves, produces fruits very much appreciated by consumers worldwide. However, its growth and yield are considerably lower than those of other genotypes, such as 'Sunrise Solo', which has intensely green leaves. We undertook an investigation with the goal of evaluating key physiological traits that can affect biomass accumulation of both Golden and Sunrise Solo genotypes. Papaya seeds from two different genotypes with contrasting leaf colour 'Sunrise Solo' and Golden were grown in greenhouse conditions. Plant growth (plant height, leaf number, stem diameter, leaf area, plant dry weight), leaf gas exchanges, leaf carbon balance, RuBisCO oxygenation and carboxylation rates, nitrogen, as well as chlorophyll concentrations and fluorescence variables were assessed. Although no significant differences were observed for photosynthetic rates between genotypes, the accumulation of small differences in photosynthesis, day after day, over a long period, might contribute to some extend to a higher C-budget in Sunrise Solo, higher leaf area and, thus, to higher productivity. Additionally, we consider that physiological processes other than photosynthesis and leaf respiration can be as well involved in lower growth and yield of Golden. One of these aspects could be related to the higher rates of photorespiration observed in Sunrise Solo, which could improve the rate of N assimilation into organic compounds, such as amino acids, thus contributing to the higher biomass production in Sunrise Solo relative to Golden. Further experiments to evaluate the effects of N metabolism on physiology and growth of Golden are required as it has the potential to limit its yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...