Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(9): 5389-5404, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37561763

ABSTRACT

Along with poor implant-bone integration, peri-implant diseases are the major causes of implant failure. Although such diseases are primarily triggered by biofilm accumulation, a complex inflammatory process in response to corrosive-related metallic ions/debris has also been recognized as a risk factor. In this regard, by boosting the titanium (Ti) surface with silane-based positive charges, cationic coatings have gained increasing attention due to their ability to kill pathogens and may be favorable for corrosion resistance. Nevertheless, the development of a cationic coating that combines such properties in addition to having a favorable topography for implant osseointegration is lacking. Because introducing hydroxyl (-OH) groups to Ti is essential to increase chemical bonds with silane, Ti pretreatment is of utmost importance to achieve such polarization. In this study, plasma electrolytic oxidation (PEO) was investigated as a new route to pretreat Ti with OH groups while providing favorable properties for implant application compared with traditional hydrothermal treatment (HT). To produce bactericidal and corrosion-resistant cationic coatings, after pretreatment with PEO or HT (Step 1), surface silanization was subsequently performed via immersion-based functionalization with 3-aminopropyltriethoxysilane (APTES) (Step 2). In the end, five groups were assessed: untreated Ti (Ti), HT, PEO, HT+APTES, and PEO+APTES. PEO created a porous surface with increased roughness and better mechanical and tribological properties compared with HT and Ti. The introduction of -OH groups by HT and PEO was confirmed by Fourier transform infrared spectroscopy and the increase in wettability producing superhydrophilic surfaces. After silanization, the surfaces were polarized to hydrophobic ones, and an increase in the amine functional group was observed by X-ray photoelectron spectroscopy, demonstrating a considerable amount of positive ions. Such protonation may explain the enhanced corrosion resistance and dead bacteria (Streptococcus aureus and Escherichia coli) found for PEO+APTES. All groups presented noncytotoxic properties with similar blood plasma protein adsorption capacity vs the Ti control. Our findings provide new insights into developing next-generation cationic coatings by suggesting that a tailorable porous and oxide coating produced by PEO has promise in designing enhanced cationic surfaces targeting biomedical and dental implant applications.


Subject(s)
Silanes , Titanium , Surface Properties , Titanium/pharmacology , Titanium/chemistry , Cations
2.
J Vis Exp ; (151)2019 09 28.
Article in English | MEDLINE | ID: mdl-31609305

ABSTRACT

Reactive sputtering is a versatile technique used to form compact films with excellent homogeneity. In addition, it allows easy control over deposition parameters such as gas flow rate that results in changes on composition and thus in the film required properties. In this report, reactive sputtering is used to deposit niobium oxide films. A niobium target is used as metal source and different oxygen flow rates to deposit niobium oxide films. The oxygen flow rate was changed from 3 to 10 sccm. The films deposited under low oxygen flow rates show higher electrical conductivity and provide better perovskite solar cells when used as electron transport layer.


Subject(s)
Electrochemical Techniques , Membranes, Artificial , Niobium/chemistry , Oxides/chemistry , Calcium Compounds , Electric Conductivity , Electron Transport , Oxygen/chemistry , Titanium
3.
Mater Sci Eng C Mater Biol Appl ; 101: 111-119, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31029304

ABSTRACT

The aim of this study was to tailor the deposition parameters of magnetron sputtering to synthetize tantalum oxide (TaxOy) films onto commercially pure titanium (cpTi) surface. The structural and optical properties, morphology, roughness, elemental chemical composition and surface energy were assessed. The impact of TaxOy films on initial Streptococcus sanguinis adhesion was investigated. The morphology and spreading of pre-osteoblastic (MC3T3-E1) cells on a crystalline tantalum oxide film were evaluated. TaxOy films with estimated thickness of 600 nm and different structures (amorphous or crystalline) were produced depending on the various oxygen flow rates and parameters used. X-ray diffraction analysis revealed that the 8 O2 sccm (600 °C/400 W) group showed crystallization corresponding to the ß-Ta2O5 phase. Optical analysis showed that the 4 O2 sccm (200 °C 300 W) to 8 O2 sccm (600 °C 300 W) groups and 10 O2 sccm (200 °C 300 W) group presented regular and large-amplitude interference oscillations, suggesting high optical homogeneity of the films. The crystalline ß-Ta2O5 coating showed higher roughness and surface energy values than the other groups (P < .05) and was biocompatible. Compared with cpTi, the amorphous and crystalline tantalum oxide films did not increase bacterial adhesion (P > .05). By tailoring the deposition parameters, we synthetized a crystalline ß-Ta2O5 coating that improved titanium surface properties and positively affected cell spreading and morphology, making it a promising surface treatment for titanium-based implants.


Subject(s)
Biocompatible Materials/chemistry , Biomedical Technology/methods , Tantalum/chemistry , Animals , Cell Line , Coated Materials, Biocompatible/chemistry , Mice , Osteoblasts/cytology , Osteoblasts/ultrastructure , Refractometry , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...