Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 275: 119334, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33711391

ABSTRACT

AIMS: We examined the effects of treatment with 1-nitro-2-phenylethane (NP), a novel soluble guanylate cyclase stimulator, on monocrotaline (MCT)-induced PAH in rats. MAIN METHODS: At day 0, male adult rats were injected with a single subcutaneous (s.c.) dose of monocrotaline (60 mg/kg). Control (CNT) rats received an equal volume of monocrotaline's vehicle only (s.c.). Four weeks later, MCT-treated rats were treated orally for 14 days with NP (50 mg/kg/day) (MCT-NP group) or its vehicle (Tween 2%) (MCT-V group). At the end of the treatment period and before invasive hemodynamic study, rats of all experimental groups were examined by echocardiography. KEY FINDINGS: With respect to CNT rats, MCT-V rats showed significant; (1) increases in pulmonary artery (PA) diameter, RV free wall thickness and end-diastolic RV area, and increase of Fulton index; (2) decreases in maximum pulmonary flow velocity, PA acceleration time (PAAT), PAAT/time of ejection ratio, and velocity-time integral; (3) increases in estimated mean pulmonary arterial pressure; (4) reduction of maximal relaxation to acetylcholine in aortic rings, and (5) increases in wall thickness of pulmonary arterioles. All these measured parameters were significantly reduced or even abolished by oral treatment with NP. SIGNIFICANCE: NP reversed endothelial dysfunction and pulmonary vascular remodeling, which in turn reduced ventricular hypertrophy. NP reduced pulmonary artery stiffness, normalized the pulmonary artery diameter and alleviated RV enlargement. Thus, NP may represent a new therapeutic or a complementary approach to treatment of PAH.


Subject(s)
Benzene Derivatives/pharmacology , Pulmonary Arterial Hypertension/drug therapy , Animals , Echocardiography , Endothelium, Vascular/drug effects , Hemodynamics/drug effects , Male , Monocrotaline/antagonists & inhibitors , Monocrotaline/pharmacology , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/diagnostic imaging , Pulmonary Artery/drug effects , Rats , Rats, Wistar , Soluble Guanylyl Cyclase/drug effects , Vascular Remodeling/drug effects
2.
Molecules ; 25(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081080

ABSTRACT

Cyanobacteria exhibit great biotechnological potential due to their capacity to produce compounds with various applicability. Volatile organic compounds (VOCs) possess low molecular weight and high vapor pressure. Many volatiles produced by microorganisms have biotechnological potential, including antimicrobial activity. This study aimed to investigate the VOCs synthesized by cyanobacterium Synechococcus sp. strain GFB01, and the influence of nitrate and phosphate on its antibacterial potential. The strain was isolated from the surface of the freshwater lagoon Lagoa dos Índios, Amapá state, in Northern Brazil. After cultivation, the VOCs were extracted by a simultaneous distillation-extraction process, using a Likens-Nickerson apparatus (2 h), and then identified by GC-MS. The extracts did not display inhibitory activity against the Gram-positive bacteria tested by the disk-diffusion agar method. However, the anti-Salmonella property in both extracts (methanol and aqueous) was detected. The main VOCs identified were heptadecane (81.32%) and octadecyl acetate (11.71%). To the best of our knowledge, this is the first study of VOCs emitted by a cyanobacterium from the Amazon that reports the occurrence of 6-pentadecanol and octadecyl acetate in cyanobacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria/drug effects , Synechococcus/chemistry , Volatile Organic Compounds/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Brazil , Distillation , Fresh Water/chemistry , Gas Chromatography-Mass Spectrometry , Nitrates/chemistry , Phosphates/chemistry , Volatile Organic Compounds/isolation & purification , Volatile Organic Compounds/pharmacology
3.
Eur J Pharmacol ; 638(1-3): 90-8, 2010 Jul 25.
Article in English | MEDLINE | ID: mdl-20406629

ABSTRACT

Previously, it was shown that intravenous (i.v.) treatment with the essential oil of Aniba canelilla (EOAC) elicited a hypotensive response that is due to active vascular relaxation rather than to the withdrawal of sympathetic tone. The present study investigated mechanisms underlying the cardiovascular responses to 1-nitro-2-phenylethane, the main constituent of the EOAC. In pentobarbital-anesthetized normotensive rats, 1-nitro-2-phenylethane (1-10mg/kg, i.v.) elicited dose-dependent hypotensive and bradycardiac effects which were characterized in two periods (phases 1 and 2). The first rapid component (phase 1) evoked by 1-nitro-2-phenylethane (10mg/kg) was fully abolished by bilateral vagotomy, perineural treatment of both cervical vagus nerves with capsaicin (250 microg/ml) and was absent after left ventricle injection. However, pretreatment with capsazepine (1mg/kg, i.v.) or ondansetron (30 microg/kg, i.v.) did not alter phase 1 of the cardiovascular responses to 1-nitro-2-phenylethane (10mg/kg, i.v.). In conscious rats, 1-nitro-2-phenylethane (1-10mg/kg, i.v.) evoked rapid hypotensive and bradycardiac (phase 1) effects that were fully abolished by methylatropine (1mg/kg, i.v.). It is concluded that 1-nitro-2-phenylethane induces a vago-vagal bradycardiac and depressor reflex (phase 1) that apparently results from the stimulation of vagal pulmonary rather than cardiac C-fiber afferents. The transduction mechanism of the 1-nitro-2-phenylethane excitation of C-fiber endings is not fully understood and does not appear to involve activation of either Vanilloid TPRV(1) or 5-HT(3) receptors. The phase 2 hypotensive response to 1-nitro-2-phenylethane seems to result, at least in part, from a direct vasodilatory effect since 1-nitro-2-phenylethane (1-300 microg/ml) induced a concentration-dependent reduction of phenylephrine-induced contraction in rat endothelium-containing aorta preparations.


Subject(s)
Benzene Derivatives/pharmacology , Bradycardia/chemically induced , Cryptocarya , Hypotension/chemically induced , Oils, Volatile/pharmacology , Reflex/drug effects , Vagus Nerve/drug effects , Animals , Aorta/drug effects , Atropine Derivatives/pharmacology , Benzene Derivatives/antagonists & inhibitors , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Dose-Response Relationship, Drug , Herb-Drug Interactions , In Vitro Techniques , Male , Oils, Volatile/isolation & purification , Ondansetron/pharmacology , Phenylephrine/antagonists & inhibitors , Phenylephrine/pharmacology , Rats , Rats, Wistar , Vagus Nerve/surgery , Vasoconstriction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...