Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Future Microbiol ; 16: 509-520, 2021 05.
Article in English | MEDLINE | ID: mdl-33960816

ABSTRACT

Aim: Melanin has been linked to pathogenesis in several fungi. They often produce melanin-like pigments in the presence of L-dihydroxyphenylalanine (L-DOPA), but this is poorly studied in Candida glabrata. Methods & materials:C. glabrata was grown in minimal medium with or without L-DOPA supplementation and submitted to a chemical treatment with denaturant and hot acid. Results:C. glabrata turned black when grown in the presence of L-DOPA, whereas cells grown without L-DOPA supplementation remained white. Biophysical properties demonstrated that the pigment was melanin. Melanized C. glabrata cells were effectively protected from azoles and amphotericin B, incubation at 42°C and macrophage killing. Conclusion: In the presence of L-DOPA, C. glabrata produces melanin, increases antifungal resistance and enhances host survival.


Aim: Melanin is a pigment that can help fungi to cause disease. Fungi often produce melanin-like pigments in the presence of L-dihydroxyphenylalanine (L-DOPA), but this is poorly studied in Candida glabrata, a yeast species that can cause human disease. Methods & materials:C. glabrata was grown in minimal medium with or without L-DOPA supplementation and submitted to a chemical treatment to isolate melanin. Results:C. glabrata turned black when grown in the presence of L-DOPA, whereas cells grown without L-DOPA supplementation remained white. Several experiments demonstrated that the black pigment was melanin. Melanized C. glabrata cells were effectively protected from antifungal drugs, incubation at 42°C and killing by cells of the immune system. Conclusion: In the presence of L-DOPA, C. glabrata produces melanin, increases antifungal resistance and has enhanced survival in contact with immunologic defense cells.


Subject(s)
Candida glabrata/pathogenicity , Candidiasis/microbiology , Melanins/metabolism , Amphotericin B/pharmacology , Animals , Antifungal Agents/pharmacology , Azoles/pharmacology , Candida glabrata/drug effects , Candida glabrata/metabolism , Candidiasis/immunology , Cytokines/metabolism , Dihydroxyphenylalanine/metabolism , Drug Resistance, Fungal , Macrophages/immunology , Mice , Microbial Viability , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL