Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 53(3): 1121-1132, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35821347

ABSTRACT

Anthracnose, caused by Colletotrichum lindemuthianum, is a disease affecting the common bean plant, Phaseolus vulgaris. To establish infection, the phytopathogen must survive the toxic compounds (phytoanticipins and phytoalexins) that are produced by the plant as a defense mechanism. To study the detoxification and efflux mechanisms in C. lindemuthianum, the abcCl1 gene, which encodes an ABC transporter, was analyzed. The abcCl1 gene (4558 pb) was predicted to encode a 1450-amino acid protein. Structural analysis of 11 genome sequences from Colletotrichum spp. showed that the number of ABC transporters varied from 34 to 64. AbcCl1 was classified in the ABC-G family of transporters, and it appears to be orthologs to ABC1 from Magnaporthe grisea and FcABC1 from Fusarium culmorum, which are involved in pleiotropic drug resistance. A abcT3 (ΔabcCl1) strain showed reduction on aggressivity when inoculated on bean leaves that presented diminishing anthracnose symptoms, which suggests the important role of AbcCl1 as a virulence factor and in fungal resistance to host compounds. The expression of abcCl1 increased in response to different toxic compounds, such as eugenol, hygromycin, and pisatin phytoalexin. Together, these results suggest that AbcCl1 is involved in fungal resistance to the toxic compounds produced by plants or antagonistic microorganisms.


Subject(s)
Colletotrichum , Phaseolus , Colletotrichum/genetics , Phaseolus/microbiology , Plant Diseases/microbiology , Virulence Factors/genetics
2.
J Appl Microbiol ; 133(3): 1857-1871, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35766136

ABSTRACT

AIM: To identify and analyse genes that encode pectinases in the genome of the fungus Colletotrichum lindemuthianum, evaluate the expression of these genes, and compare putative pectinases found in C. lindemuthianum with pectinases produced by other fungi and oomycetes with different lifestyles. METHODS AND RESULTS: Genes encoding pectinases in the genome of C. lindemuthianum were identified and analysed. The expression of these genes was analysed. Pectinases from C. lindemuthianum were compared with pectinases from other fungi that have different lifestyles, and the pectinase activity in some of these fungi was quantified. Fifty-eight genes encoding pectinases were identified in C. lindemuthianum. At least six types of enzymes involved in pectin degradation were identified, with pectate lyases and polygalacturonases being the most abundant. Twenty-seven genes encoding pectinases were differentially expressed at some point in C. lindemuthianum during their interactions with their host. For each type of pectinase, there were at least three isoenzyme groups. The number of pectinases present in fungi with different lifestyles seemed to be related more to the lifestyle than to the taxonomic relationship between them. Only phytopathogenic fungi showed pectate lyase activity. CONCLUSIONS: The collective results demonstrate the pectinolytic arsenal of C. lindemuthianum, with many and diverse genes encoding pectinases more than that found in other phytopathogens, which suggests that at least part of these pectinases must be important for the pathogenicity of the fungus C. lindemuthianum. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge of these pectinases could further the understanding of the importance of this broad pectinolytic arsenal in the common bean infection and could be exploited for biotechnological purposes.


Subject(s)
Colletotrichum , Fabaceae , Colletotrichum/genetics , Fabaceae/microbiology , Fungi/metabolism , Polygalacturonase/genetics , Polygalacturonase/metabolism
3.
FEMS Microbiol Lett ; 367(22)2020 12 14.
Article in English | MEDLINE | ID: mdl-33220681

ABSTRACT

The Núcleo de Estudos em Microbiologia Agrícola (NEMA) is an academic-scientific group created by graduate students in the Post Graduate in Agricultural Microbiology in the Department of Microbiology at Universidade Federal de Viçosa, Brazil. NEMA's purposes include promoting and sharing research and knowledge on microbiology in different fields of application. Here, we will comment on our experience in organizing the Summer School on Microbiology and teaching microbiology to undergraduate students during the program. NEMA offers this annual event to disseminate and stimulate knowledge about microbiology for undergraduate students in a participatory, collaborative and interactive way.


Subject(s)
Microbiology/education , Simulation Training/organization & administration , Teaching/standards , Brazil , Female , Humans , Male , Simulation Training/standards , Universities , Young Adult
4.
J Plant Dis Prot (2006) ; 127(3): 411-416, 2020.
Article in English | MEDLINE | ID: mdl-32421075

ABSTRACT

A survey to investigate the occurrence of cassava anthracnose disease (CAD) and distribution of Colletotrichum spp. in cassava plantations in different eco-zones of the Reconcavo Region in Bahia, Brazil, investigated during the rainy season of 2014. A total of 50 cassava fields distributed among 18 municipalities were visited and intensity of anthracnose evaluated. The highest disease incidence (DI) (83.3%) was in samples collected in São Félix, and the lowest (34.4%), in Varzedo. Municipalities that presented the highest values for DI were located within the 'Af' Köppen-Geiger eco-zone, also presenting the highest values for the estimated McKinney disease index. Based on previous studies of multilocus phylogeny, seven different species of Colletotrichum were identified (Colletotrichum fructicola, Colletotrichum tropicale, Colletotrichum gloeosporioides s.s, Colletotrichum theobromicola, Colletotrichum siamense, Colletotrichum brevisporum and Colletotrichum plurivorum) and a new approach based on ERIC-PCR was used aiming to group the 82 isolates according to these findings. The highest percentage of genetic variance (> 78%) was among isolates within fields. Based on the survey and genetic analysis, C. fructicola is probably the main causal agent of cassava anthracnose in the Recôncavo Region, since this species was present with highest incidence in all eco-zones, 47.61, 42.86 and 57.14% for Af (tropical rainforest climate), As (tropical dry savanna climate) and Aw (tropical wet savanna climate), respectively. This study is the first report of C. fructicola lineages as the most likely pathogen causing anthracnose disease of cassava in Brazil, and these findings may be used to guide the selection of resistant varieties.

5.
Appl Microbiol Biotechnol ; 104(5): 1891-1904, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31932894

ABSTRACT

The genus Colletotrichum comprises species with different lifestyles but is mainly known for phytopathogenic species that infect crops of agronomic relevance causing considerable losses. The fungi of the genus Colletotrichum are distributed in species complexes and within each complex some species have particularities regarding their lifestyle. The most commonly found and described lifestyles in Colletotrichum are endophytic and hemibiotrophic phytopathogenic. Several of these phytopathogenic species show wide genetic variability, which makes long-term maintenance of resistance in plants difficult. Different mechanisms may play an important role in the emergence of genetic variants but are not yet fully understood in this genus. These mechanisms include heterokaryosis, a parasexual cycle, sexual cycle, transposable element activity, and repeat-induced point mutations. This review provides an overview of the genus Colletotrichum, the species complexes described so far and the most common lifestyles in the genus, with a special emphasis on the mechanisms that may be responsible, at least in part, for the emergence of new genotypes under field conditions.


Subject(s)
Colletotrichum/growth & development , Colletotrichum/genetics , Genetic Variation/genetics , Plant Diseases/microbiology , DNA Transposable Elements/genetics , Endophytes , Genome, Fungal/genetics , Host Specificity , Repetitive Sequences, Nucleic Acid/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...