Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 34(4): 1024-1033, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33720704

ABSTRACT

Propolis is one of the most widely used products in traditional medicine. One of the most prominent types of Brazilian propolis is the red one, whose primary botanical source is Dalbergia ecastaphyllum (L.) Taub. Despite the potential of Brazilian red propolis for developing new products with pharmacological activity, few studies guarantee safety in its use. The objective of this study was the evaluation of the possible toxic effects of Brazilian red propolis and D. ecastaphyllum, as well as the cytotoxicity assessment of the main compounds of red propolis on tumoral cell lines. Hydroalcoholic extracts of the Brazilian red propolis (BRPE) and D. ecastaphyllum stems (DSE) and leaves (DLE) were prepared and chromatographed for isolation of the major compounds. RP-HPLC-DAD was used to quantify the major compounds in the obtained extracts. The XTT assay was used to evaluate the cytotoxic activity of the extracts in the human fibroblast cell line (GM07492A). The results revealed IC50 values of 102.7, 143.4, and 253.1 µg/mL for BRPE, DSE, and DLE, respectively. The extracts were also evaluated for their genotoxic potential in the micronucleus assay in Chinese hamster lung fibroblasts cells (V79), showing the absence of genotoxicity. The BRPE was investigated for its potential in vivo toxicity in the zebrafish model. Concentrations of 0.8-6.3 mg/L were safe for the animals, with a LC50 of 9.37 mg/L. Of the 11 compounds isolated from BRPE, medicarpin showed a selective cytotoxic effect against the HeLa cell line. These are the initial steps to determine the toxicological potential of Brazilian red propolis.


Subject(s)
Dalbergia/chemistry , Plant Extracts/pharmacology , Propolis/pharmacology , Animals , Brazil , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Propolis/chemistry , Propolis/isolation & purification , Zebrafish
2.
J Biochem Mol Toxicol ; 35(4): e22712, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33484013

ABSTRACT

Asiatic acid (AA) is a triterpene with promising pharmacological activity. In the present study, in vitro and in vivo assays were conducted to understand the effect of AA on cell proliferation and genomic instability. AA was cytotoxic to human tumor cell lines (M059J, HeLa, and MCF-7), with IC50 values ranging from 13.91 to 111.72 µM. In the case of M059J, AA exhibited selective cytotoxicity after 48 h of treatment (IC50 = 24 µM), decreasing the percentage of cells in the G0/G1 phase, increasing the percentage of cells in the S phase, and inducing apoptosis. A significant increase in chromosomal damage was observed in V79 cell cultures treated with AA (40 µM), revealing genotoxic activity. In contrast, low concentrations (5, 10, and 20 µM) of AA significantly reduced the frequencies of micronuclei induced by the mutagens doxorubicin (DXR), methyl methanesulfonate, and hydrogen peroxide. A reduction of DXR-induced intracellular free radicals was found in V79 cells treated with AA (10 µM). The antigenotoxic effect of AA (30 mg/kg) was also observed against DXR-induced chromosomal damage in Swiss mice. Significant reductions in p53 levels were verified in the liver tissue of these animals. Taken together, the data indicate that AA exerted antiproliferative activity in M059J tumor cells, which is probably related to the induction of DNA damage, leading to cell cycle arrest and apoptosis. Additionally, low concentrations of AA exhibited antigenotoxic effects and its antioxidant activity may be responsible, at least in part, for chemoprevention.


Subject(s)
Antioxidants/pharmacology , Cell Cycle/drug effects , DNA Damage , Pentacyclic Triterpenes/pharmacology , Animals , Cricetulus , Cytotoxins/adverse effects , Cytotoxins/pharmacology , Doxorubicin/adverse effects , Doxorubicin/pharmacology , HeLa Cells , Humans , MCF-7 Cells , Male , Mice
3.
Gerodontology ; 29(2): e1019-23, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22225509

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the flexural strength and Vickers hardness of a microwave energy heat-cured acrylic resin by adding different concentrations of silane surface-treated nanoparticle silica. METHODS: Acrylic resin specimens with dimensions of 65 × 10 × 2.5 mm were formed and divided into five experimental groups (n = 10) according to the silica concentration added to the acrylic resin mass (weight %) prior to polymerisation : G1, without silica; G2, 0.1% silica; G3, 0.5% silica; G4, 1.0% silica; and G5, 5.0% silica. The specimens were submitted to a three-point flexural strength test and to the Vickers hardness test (HVN). The data obtained were statistically analysed by anova and the Tukey test (α = 0.05). RESULTS: Regarding flexural strength, G5 differed from the other experimental groups (G1, G2, G3 and G4) presenting the lowest mean, while G4 presented a significantly higher mean, with the exception of group G3. Regarding Vickers hardness, a decrease in values was observed, in which G1 presented the highest hardness compared with the other experimental groups. CONCLUSION: Incorporating surface-treated silica resulted in direct benefits in the flexural strength of the acrylic resin activated by microwave energy; however, similar results were not achieved for hardness.


Subject(s)
Acrylic Resins/chemistry , Dental Materials/chemistry , Microwaves , Silanes/chemistry , Silicon Dioxide/chemistry , Acrylic Resins/radiation effects , Dental Materials/radiation effects , Dental Stress Analysis/instrumentation , Glass/chemistry , Glass/radiation effects , Hardness , Hot Temperature , Humans , Materials Testing , Nanoparticles/chemistry , Nanoparticles/radiation effects , Pliability , Polymerization , Silanes/radiation effects , Silicon Dioxide/radiation effects , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...