Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 342: 54-63, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34687809

ABSTRACT

Pseudomonas aeruginosa is an important chassis for production of polyhydroxyalkanoates (PHA) and rhamnolipids (RHL). Advances in the understanding of the biosynthesis metabolism of these biocompounds are crucial for increasing yield. 13C-Metabolic Flux Ratio Analysis (13C-MFA) is a technique to estimate in vivo metabolic fluxes ratios. PHA and RHL are essentially non-growth associated products of biotechnological interest and both contain hydroxyalkanoates (HAs), whose labeling patterns could be accessed by GC-MS. In this study, to reveal the relative contributions of the Entner-Doudoroff (ED) pathway and the non-oxidative Pentose Phosphate (PP) pathway to PHA and RHL production, 13C-MFA was performed in Pseudomonas aeruginosa LFM634 when supplied with labeled glucose. This bacterial strain lacks both functional EMP and the oxidative PP branch. Labeling patterns in HAs were measured. Experiments with [U-13C] glucose indicated a low flux though PP pathway. An optimal design of labeling experiment showed that [6-13C] glucose would be the best substrate to enable an estimation of the ED flux with high accuracy. Results of experiments performed with this isotope indicated that about two-thirds of glyceraldehyde 3-phosphate is recycled through a cyclic ED architecture, suggesting that P. aeruginosa utilizes that cycle to regulate the NADPH/Acetyl-CoA ratio for PHA and RHL biosynthesis.


Subject(s)
Polyhydroxyalkanoates , Glucose , Glycolipids , Pentose Phosphate Pathway , Polyhydroxyalkanoates/metabolism , Pseudomonas aeruginosa/metabolism
2.
Int J Biol Macromol ; 166: 448-458, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33127545

ABSTRACT

Poly-3-hydroxybutyrate (P(3HB)) and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(3HB-co-3HHx)) are biocompatible and bioabsorbable biopolymers produced by different bacteria with potential for drug delivery in thermo-responsive magnetic microcarriers. Microparticles of P(3HB) and P(3HB-co-3HHx), with 5.85% mol of 3HHx, produced by Burkholderia sacchari, containing nanomagnetite (nM) and lipophilic hormone were prepared by simple emulsion (oil/water) technique leading to progesterone (Pg) encapsulation efficiency higher than 70% and magnetite loads of 3.1 and 2.3% (w/w) for P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg, respectively. These formulations were characterized by Infrared spectroscopy, X-ray diffraction, Thermal gravimetric analysis and Electron microscopy (TEM, SEM) techniques. The P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg microparticles presented spherical geometry with wrinkled surfaces and average size between 2 and 40 µm for 90% of the microparticles. The release profiles of the P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg formulations showed a hormone release trigger (6.9 and 11.1%, respectively) effect induced by oscillating external magnetic field (0.2 T), after 72 h. Progesterone release in non-magnetic tests with P(3HB-co-3HHx)/nM/Pg revealed a slight increment (5.6%) in relation to P(3HB)/nM/Pg. The experimental release of the P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg samples presented a good agreement with Higuchi model. The 3HHx comonomer content improves the hormone release of the P(3HB-co-3HHx)/nM/Pg formulation with potential for application to synchronize the estrous cycle.


Subject(s)
Drug Carriers/chemistry , Ferrosoferric Oxide/chemistry , Hydroxybutyrates/pharmacology , Nanoparticles/chemistry , Polyesters/pharmacology , Progesterone/pharmacology , Calorimetry, Differential Scanning , Crystallization , Emulsions/chemistry , Nanoparticles/ultrastructure , Oils/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , Water/chemistry , X-Ray Diffraction
3.
Mater Sci Eng C Mater Biol Appl ; 86: 144-150, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29525089

ABSTRACT

As intracellular carbon and energy storage materials, polyhydroxyalkanoates (PHA) are a diverse biopolyesters synthesized by many bacteria. PHA have been produced in large quantity for various application research including medical implants for approximately 30years. Many studies demonstrated that PHA are promising implant materials due to their diverse and ascendant mechanical, biodegradable and tissue compatible properties. Importantly, common PHA biodegradation products including oligomers and monomers are also not toxic to the cells and tissues. Pharmaceutical applications of some PHA degradation products also have been reported. So far, no study has been reported to have any carcinogenesis result induced by any PHA or their biodegradation products. All results suggest that PHA could be developed into various bio-implant products.


Subject(s)
Biocompatible Materials/chemistry , Polyhydroxyalkanoates/chemistry , Animals , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cell Differentiation , Drug Carriers/chemistry , Humans , Nanofibers/chemistry , Polyhydroxyalkanoates/metabolism , Polyhydroxyalkanoates/pharmacology , Printing, Three-Dimensional , Prostheses and Implants , Tissue Engineering
4.
J Ind Microbiol Biotechnol ; 45(3): 165-173, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29349569

ABSTRACT

Despite the versatility and many advantages of polyhydroxyalkanoates as petroleum-based plastic substitutes, their higher production cost compared to petroleum-based polymers has historically limited their large-scale production. One appealing approach to reducing production costs is to employ less expensive, renewable feedstocks. Xylose, for example is an abundant and inexpensive carbon source derived from hemicellulosic residues abundant in agro-industrial waste (sugarcane bagasse hemicellulosic hydrolysates). In this work, the production of poly-3-hydroxybutyrate P(3HB) from xylose was studied to develop technologies for conversion of agro-industrial waste into high-value chemicals and biopolymers. Specifically, this work elucidates the organization of the xylose assimilation operon of Burkholderia sacchari, a non-model bacterium with high capacity for P(3HB) accumulation. Overexpression of endogenous xylose isomerase and xylulokinase genes was successfully assessed, improving both specific growth rate and P(3HB) production. Compared to control strain (harboring pBBR1MCS-2), xylose utilization in the engineered strain was substantially improved with 25% increase in specific growth rate, 34% increase in P(3HB) production, and the highest P(3HB) yield from xylose reported to date for B. sacchari (YP3HB/Xil = 0.35 g/g). This study highlights that xylA and xylB overexpression is an effective strategy to improve xylose utilization and P(3HB) production in B. sacchari.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Burkholderia/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Xylose/metabolism , Bacterial Proteins , Biomass , Biopolymers , Burkholderia/genetics , Burkholderiaceae , Catalysis , Chemistry, Pharmaceutical , DNA/chemistry , Fermentation , Industrial Microbiology , Operon , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plasmids/metabolism
5.
FEBS Open Bio ; 5: 908-15, 2015.
Article in English | MEDLINE | ID: mdl-26702395

ABSTRACT

Despite the lack of biochemical information, all available in silico metabolic models of Pseudomonas putida KT2440 consider NADP as the only cofactor accepted by the glucose-6-phosphate dehydrogenases. Because the Entner-Doudoroff pathway is the main glycolytic route in this bacterium, determining how much NADH and NADPH are produced in the reaction catalyzed by these enzymes is very important for the correct interpretation of metabolic flux distributions. To determine the actual cofactor preference of the glucose-6-phosphate dehydrogenase encoded by the zwf-1 gene (PputG6PDH-1), the major isoform during growth on glucose, we purified this protein and studied its kinetic properties. Based on simple kinetic principles, we estimated the in vivo relative production of NADH and NADPH during the oxidation of glucose-6-phosphate (G6P). Contrary to the general assumption, our calculations showed that the reaction catalyzed by PputG6PDH-1 yields around 1/3 mol of NADPH and 2/3 mol of NADH per mol of oxidized G6P. Additionally, we obtained data suggesting that the reaction catalyzed by the 6-phosphogluconate dehydrogenase is active during growth on glucose, and it also produces NADH. These results indicate that the stoichiometric matrix of in silico models of P. putida KT2440 must be corrected and highlight the importance of considering the physiological concentrations of the involved metabolites to estimate the actual proportion of NADH and NADPH produced by a dehydrogenase.

6.
Int Microbiol ; 16(1): 1-15, 2013 Mar.
Article in English | MEDLINE | ID: mdl-24151777

ABSTRACT

Polyhydroxyalkanoates (PHAs) are biodegradable biocompatible polyesters, which accumulate as granules in the cytoplasm of many bacteria under unbalanced growth conditions. Medium-chain-length PHAs (mcl-PHAs), characterized by C6-C14 branched monomer chains and typically produced by Pseudomonas species, are promising thermoelastomers, as they can be further modified by introducing functional groups in the side chains. Functionalized PHAs are obtained either by feeding structurally related substrates processed through the beta-oxidation pathway, or using specific strains able to transform sugars or glycerol into unsaturated PHA by de novo fatty-acid biosynthesis. Functionalized mcl-PHAs provide modified mechanical and thermal properties, and consequently have new processing requirements and highly diverse potential applications in emergent fields such as biomedicine. However, process development and sample availability are limited due to the toxicity of some precursors and still low productivity, which hinder investigation. Conversely, improved mutant strains designed through systems biology approaches and cofeeding with low-cost substrates may contribute to the widespread application of these biopolymers. This review focuses on recent developments in the production of functionalized mcl-PHAs, placing particular emphasis on strain and bioprocess design for cost-effective production.


Subject(s)
Polyhydroxyalkanoates/biosynthesis , Pseudomonas/metabolism , Biopolymers/biosynthesis , Biopolymers/chemistry , Biopolymers/economics , Metabolic Networks and Pathways , Oxidation-Reduction , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/economics , Pseudomonas/chemistry , Pseudomonas/cytology
7.
Toxicon ; 71: 11-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23688393

ABSTRACT

Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including cone-snails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.


Subject(s)
Hydrozoa/chemistry , Nematocyst/chemistry , Proteomics/methods , Animals , Chromatography, Liquid , Cnidarian Venoms/chemistry , Cytotoxins/chemistry , Neurotoxins/chemistry , Snake Venoms/chemistry , Spider Venoms/chemistry , Tandem Mass Spectrometry
8.
Appl Biochem Biotechnol ; 170(6): 1336-47, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666612

ABSTRACT

The production of ultrahigh molecular weight poly-3-hydroxybutyric acid (P3HB) from carbohydrates by recombinant Escherichia coli harboring genes from Ralstonia eutropha was evaluated. In shaken-flask experiments, E. coli XL1 Blue harboring plasmid pSK::phaCAB produced P3HB corresponding to 40 and 27% of cell dry weight from glucose and xylose, respectively. Cultures in bioreactor using glucose as the sole carbon source at variable pH values (6.0, 6.5, or 7.0) allowed the production of P3HB with molecular weight varying between 2.0 and 2.5 MDa. These figures are significantly higher than the values often obtained by natural bacterial strains (0.5-1.0 MDa). Contrary to reports of other authors, no influence of pH was observed on the molecular weight of the polymer produced. Using xylose, P3HB with high molecular weight was also produced, indicating the possibility to produce these polymers from lignocellulosic materials.


Subject(s)
Cupriavidus necator/physiology , Escherichia coli/physiology , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Multienzyme Complexes/metabolism , Polyesters/chemistry , Polyesters/metabolism , Recombinant Proteins/metabolism , Hydrogen-Ion Concentration , Hydroxybutyrates/isolation & purification , Molecular Weight , Multienzyme Complexes/genetics , Polyesters/isolation & purification
9.
Microb Ecol ; 63(3): 565-77, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21938508

ABSTRACT

The chemical ecology and biotechnological potential of metabolites from endophytic and rhizosphere fungi are receiving much attention. A collection of 17 sugarcane-derived fungi were identified and assessed by PCR for the presence of polyketide synthase (PKS) genes. The fungi were all various genera of ascomycetes, the genomes of which encoded 36 putative PKS sequences, 26 shared sequence homology with ß-ketoacyl synthase domains, while 10 sequences showed homology to known fungal C-methyltransferase domains. A neighbour-joining phylogenetic analysis of the translated sequences could group the domains into previously established chemistry-based clades that represented non-reducing, partially reducing and highly reducing fungal PKSs. We observed that, in many cases, the membership of each clade also reflected the taxonomy of the fungal isolates. The functional assignment of the domains was further confirmed by in silico secondary and tertiary protein structure predictions. This genome mining study reveals, for the first time, the genetic potential of specific taxonomic groups of sugarcane-derived fungi to produce specific types of polyketides. Future work will focus on isolating these compounds with a view to understanding their chemical ecology and likely biotechnological potential.


Subject(s)
Fungal Proteins/genetics , Fungi/enzymology , Genetic Variation , Polyketide Synthases/genetics , Saccharum/microbiology , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Molecular Sequence Data , Phylogeny , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...