Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 117(28): 5826-36, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23796002

ABSTRACT

The enthalpy of hydrogenation of uracil was derived from the experimental enthalpies of formation, in the gaseous phase, of uracil and 5,6-dihydrouracil, in order to analyze its aromaticity. The enthalpy of formation of 5,6-dihydrouracil was obtained from combustion calorimetry, Knudsen effusion technique and Calvet microcalorimetry results. High-level computational methods were tested for the enthalpy of hydrogenation of uracil, but only with G3 was possible to obtain results in agreement with the experimental ones. It was found that uracil possesses 30.0% of aromatic character in the gaseous phase. Using both implicit, explicit, and hybrid solvation methods, it was possible to obtain a reference value for the enthalpy of hydrogenation of uracil in the aqueous solution and the effect of polarity and hydrogen bonds on the aromaticity of uracil was analyzed. The value of the hydrogenation enthalpy of uracil in aqueous solution was compared with the experimental value in the crystal phase, also dominated by polarity and hydrogen bonds, derived from combustion calorimetry results. The supramolecular effects on the crystal lattice were explored by the computational simulation of π-π staking dimers and hydrogen bonded dimers.


Subject(s)
Thermodynamics , Uracil/chemistry , Crystallization , Gases/chemistry , Hydrogen Bonding , Hydrogenation , Molecular Structure , Quantum Theory , Solutions , Uracil/analogs & derivatives , Uracil/chemical synthesis , Water/chemistry
2.
J Phys Chem B ; 115(43): 12549-57, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21888319

ABSTRACT

The present paper reports an experimental calorimetric study of 2-pyrrolecarboxaldehyde and 1-methyl-2-pyrrolecarboxaldehyde, which aims to determine their standard (p° = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K. These values were derived from the standard (p° = 0.1 MPa) molar enthalpies of formation, in the condensed phase, Δ(f)H(m)°(cr,l), at T = 298.15 K, obtained from the standard molar enthalpies of combustion, ΔcHm°, measured by static bomb combustion calorimetry, and from the standard molar enthalpies of phase transition, Δ(cr,l)(g) H(m)° at T = 298.15 K, obtained by high temperature Calvet microcalorimetry. Additionally, the standard enthalpies of formation of these two compounds were estimated by computations based on standard ab initio molecular calculations at the G3(MP2)//B3LYP level. The estimated values are in very good agreement with experimental data, giving us support to estimate the gas-phase enthalpies of formation of the 3-pyrrolecarboxaldehyde and 1-methyl-3-pyrrolecarboxaldehyde that were not studied experimentally. N-H bond dissociation enthalpies, gas-phase acidities and basicities, proton and electron affinities, and adiabatic ionization enthalpies were also calculated. Furthermore, the molecular structure of the four molecules was established and the structural parameters were determined at the B3LYP/6-31G(d) level of theory.


Subject(s)
Aldehydes/chemistry , Pyrroles/chemistry , Calorimetry , Gases/chemistry , Isomerism , Phase Transition , Thermodynamics
3.
J Phys Chem B ; 115(30): 9401-9, 2011 Aug 04.
Article in English | MEDLINE | ID: mdl-21678972

ABSTRACT

Calorimetric measurements are expected to provide useful data regarding the relative stability of α- versus ß-amino acid isomers, which, in turn, may help us to understand why nature chose α- instead of ß-amino acids for the formation of the biomolecules that are essential constituents of life on earth. The present study is a combination of the experimental determination of the enthalpy of formation of N-benzyl-ß-alanine, and high-level ab initio calculations of its molecular structure. The experimentally determined standard molar enthalpy of formation of N-benzyl-ß-alanine in gaseous phase at T = 298.15 K is -(298.8 ± 4.8) kJ·mol(-1), whereas its G3(MP2)//B3LYP-calculated enthalpy of formation is -303.7 kJ·mol(-1). This value is in very good agreement with the experimental one. Although the combustion experiments of N-benzyl-α-alanine were unsuccessful, its calculated enthalpy of formation is -310.7 kJ·mol(-1); thus, comparison with the corresponding experimental enthalpy of formation of N-benzyl-ß-alanine, -(298.8 ± 4.8) kJ/mol, is in line with the concept that the more branched amino acid (α-alanine) is intrinsically more stable than the linear ß-amino acid, ß-alanine.


Subject(s)
Aminobutyrates/chemistry , Models, Chemical , Calorimetry, Differential Scanning , Isomerism , Molecular Conformation , Thermodynamics
4.
J Phys Chem B ; 114(49): 16471-80, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21087063

ABSTRACT

This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and ß-alanine. The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline α-alanine (DL) and ß-alanine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and H2O(l), measured by static-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of both amino acids were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation at T = 298.15 K was derived from the Clausius−Clapeyron equation. The experimental values were used to calculate the standard (p° = 0.1 MPa) enthalpy of formation of α-alanine (DL) and ß-alanine in the gaseous phase, Δ(f)H(m)°(g), as −426.3 ± 2.9 and −421.2 ± 1.9 kJ·mol(−1), respectively. Standard ab initio molecular orbital calculations at the G3 level were performed. Enthalpies of formation, using atomization reactions, were calculated and compared with experimental data. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out.


Subject(s)
Alanine/chemistry , Computer Simulation , Thermodynamics , beta-Alanine/chemistry , Calorimetry, Differential Scanning , Molecular Structure
5.
J Phys Chem B ; 114(49): 16214-22, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-20949955

ABSTRACT

Thermochemical and thermodynamic properties of 2,5-dimethyl-1-phenylpyrrole and 2,5-dimethyl-1-(4-nitrophenyl)pyrrole have been determined by using a combination of calorimetric and effusion techniques as well as high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline state, Δ(f)H(m)°(cr), at T = 298.15 K, were derived from the standard molar enthalpies of combustion, Δ(c)H(m)°, which were obtained from static bomb combustion calorimetry. The Knudsen mass-loss effusion technique was used to determine the standard molar enthalpies of sublimation, Δ(cr)(g)H(m)°, at T = 298.15 K. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were derived. The results were analyzed and interpreted in terms of enthalpic increments and molecular structure. For comparison purposes, standard ab initio molecular calculations at the G3(MP2)//B3LYP level were performed, using a set of working reactions and the gas-phase enthalpies of formation of both compounds were estimated; the results are in excellent agreement with experimental data. The computational study was also extended to the determination of proton and electron affinities, basicities and adiabatic ionization enthalpies.

6.
J Phys Chem B ; 114(32): 10530-40, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20734495

ABSTRACT

This paper reports an experimental and theoretical study of the standard (p(degrees) = 0.1 MPa) molar enthalpies of formation at T = 298.15 K of the sulfur-containing amino acids l-cysteine [CAS 52-90-4] and l-cystine [CAS 56-89-3]. The standard (p(degrees) = 0.1 MPa) molar enthalpies of formation of crystalline l-cysteine and l-cystine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g) and H2SO4.115H2O, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of l-cysteine were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpy of sublimation, at T = 298.15 K, was derived from the Clausius-Clapeyron equation. The experimental values were used to calculate the standard (p(degrees) = 0.1 MPa) enthalpy of formation of l-cysteine in the gaseous phase, DeltafH(degrees)m(g) = -382.6 +/- 1.8 kJ x mol-1. Due to the low vapor pressures of l-cystine and since this compound decomposes at the temperature range required for a possible sublimation, it was not possible to determine its enthalpy of sublimation. Standard ab initio molecular orbital calculations at the G3(MP2)//B3LYP and/or G3 levels were performed. Enthalpies of formation, using atomization and isodesmic reactions, were calculated and compared with experimental data. A value of -755 +/- 10 kJ x mol-1 was estimated for the enthalpy of formation of cystine. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out. Finally, bond dissociation enthalpies (BDE) of S-H, S-S, and C-S bonds, and enthalpies of formation of l-cysteine-derived radicals, were also computed.


Subject(s)
Amino Acids/chemistry , Cysteine/chemistry , Cystine/chemistry , Sulfhydryl Compounds/chemistry , Sulfur/chemistry , Computer Simulation , Humans , Molecular Conformation , Molecular Structure , Thermodynamics
7.
J Phys Chem A ; 113(15): 3630-8, 2009 Apr 16.
Article in English | MEDLINE | ID: mdl-19320446

ABSTRACT

A combined experimental and computational study on the thermochemistry of 2- and 3-acetylpyrroles was performed. The enthalpies of combustion and sublimation were measured by static bomb combustion calorimetry and Knudsen effusion mass-loss technique, respectively, and the standard (p(o) = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were determined. Additionally, the gas-phase enthalpies of formation were estimated by G3(MP2)//B3LYP calculations, using several gas-phase working reactions, and were compared with the experimental ones. N-H bond dissociation enthalpies, gas-phase acidities and basicities, proton and electron affinities and ionization enthalpies were also calculated. Experimental and theoretical results are in good agreement and show that 2-acetylpyrrole is thermodynamically more stable than the 3-isomer. The substituent effects of the acetyl group in pyrrole, thiophene and pyridine rings were also analyzed.


Subject(s)
Pyrroles/chemistry , Calorimetry , Computer Simulation , Entropy , Isomerism , Models, Molecular , Molecular Conformation , Structure-Activity Relationship , Temperature , Volatilization
8.
J Phys Chem A ; 112(47): 12263-9, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18980369

ABSTRACT

Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline.


Subject(s)
Computer Simulation , Indoles/chemistry , Models, Chemical , Calorimetry , Electrons , Gases/chemistry , Phase Transition , Protons , Temperature , Thermodynamics , Volatilization
9.
J Phys Chem B ; 111(45): 13033-40, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17960931

ABSTRACT

The standard (p degrees = 0.1 MPa) molar enthalpies of formation, Delta(f)H(m)degrees, of crystalline 2-, 3- and 4-chlorobenzophenone and 4,4'-dichlorobenzophenone were derived from the standard molar energies of combustion, Delta(c)U(m)degrees, in oxygen, to yield CO(2)(g), N(2)(g), and HCl x 600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpy of sublimation, Delta(cr)(g)H(m)degrees, of the compound 2-chlorobenzophenone. For the other three compounds, the standard molar enthalpies of sublimation, at T = 298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapor pressures of these compounds, measured by the Knudsen-effusion technique. From the values of Delta(f)H(m)degrees and Delta(cr)(g)H(m)degrees, the standard molar enthalpies of formation of all the compounds, in the gaseous phase, Delta(f)H(m)degrees (g), at T = 298.15 K, were derived. These values were also calculated by using the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computational approach.


Subject(s)
Benzophenones/chemistry , Hydrocarbons, Chlorinated/chemistry , Models, Molecular , Molecular Conformation , Thermodynamics
10.
J Phys Chem A ; 111(43): 11084-92, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17918809

ABSTRACT

The relative stabilities of 2- and 3-acetylthiophenes have been evaluated by experimental thermochemistry and the results compared to high-level ab initio calculations. The enthalpies of combustion, vaporization, and sublimation were measured by rotating-bomb combustion calorimetry, Calvet microcalorimetry, correlation gas chromatography, and Knudsen effusion techniques and the gas-phase enthalpies of formation, at T = 298.15 K, were determined. Standard ab initio molecular orbital calculations at the G2 and G3 levels were performed, and a theoretical study on the molecular and electronic structures of the compounds studied has been conducted. Calculated enthalpies of formation using atomization and isodesmic reactions are compared with the experimental data. Experimental and theoretical results show that 2-acetylthiophene is thermodynamically more stable than the 3-isomer. A comparison of the substituent effect of the acetyl group in benzene and thiophene rings has been carried out.

11.
J Phys Chem A ; 111(24): 5280-6, 2007 Jun 21.
Article in English | MEDLINE | ID: mdl-17530748

ABSTRACT

Thiophene-based compounds have widespread use in modern drug design, biodiagnostics, electronic and optoelectronic devices, and conductive polymers. The present study reports an experimental and computational thermochemical study on the relative stabilities of 2- and 3-thiopheneacetic acid methyl esters. The enthalpies of combustion and vaporization were measured by a rotating-bomb combustion calorimeter, Calvet microcalorimetry, and correlation gas chromatography, and the gas-phase enthalpies of formation at T=298.15 K were determined. Standard ab initio molecular orbital calculations at the G3 level were performed, and a theoretical study of the molecular and electronic structure of the compounds studied was carried out. Calculated enthalpies of formation, using atomization and isodesmic reactions are in very good agreement with the experimental results.


Subject(s)
Acetates/chemistry , Acetic Acid/chemistry , Thiophenes/chemistry , Acetic Acid/metabolism , Computer Simulation , Drug Design , Drug Stability , Molecular Structure , Thermodynamics , Thiophenes/metabolism
12.
J Phys Chem B ; 111(4): 792-9, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17249823

ABSTRACT

The standard (p0 = 0.1 MPa) molar enthalpies of formation, Delta fH(0)(M), for liquid 2,4,6-trichloropyrimidine and for crystalline 2-chloropyrimidine, 2,4- and 4,6-dichloropyrimidine, and 2,4,5,6-tetrachloropyrimidine compounds were determined at T = 298.15 K by rotating-bomb combustion calorimetry. The standard molar enthalpies of vaporization or sublimation, Delta (g)(cr,l) H(0)(M), of these compounds at T = 298.15 K were determined by Calvet microcalorimetry. The experimental standard molar enthalpies of formation of those compounds, in the gaseous state, at T = 298.15 K, were thus obtained by combining these two sets of results. The latter values have been employed in the calibration of the computational procedure, which has been used to estimate the gas-phase enthalpies of formation for the other chloropyrimidines that were not possible to obtain in a pure form for the experimental study. It is found that the exchange-correlation functional based on the local spin density approximation (LSDA) seems to be a cheap choice for the estimation of enthalpies of formation for heterocycles containing nitrogen atoms; the well-known B3LYP hybrid method yields larger differences, with respect to the experimental values, for 2,4,6-tri- and 2,4,5,6-tetrachloropyrimidines.


Subject(s)
Chemistry, Physical/methods , Chlorine Compounds/chemistry , Pyrimidines/chemistry , Calibration , Computer Simulation , Hot Temperature , Models, Chemical , Molecular Structure , Software , Temperature , Thermodynamics
13.
J Phys Chem A ; 110(51): 13948-55, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181355

ABSTRACT

A computational study on the thermodynamic properties of 13 beta-diketones is presented. The B3LYP//6-311+G(2d,2p)//B3LYP/6-31G(d) theoretical approach was employed to compute the O-H and C-H bond dissociation enthalpies and enthalpy of tautomerization and to estimate standard gas-phase enthalpies of formation for the radicals and for the parent molecules. The gas-phase enthalpies of formation for the neutral molecules are in excellent agreement with available experimental data, supporting the estimates made for the radicals. The latter are very important for the clarification of the thermochemistry of many beta-diketonato metal complexes previously reported in the literature. Importantly, when substituents R = -CHR' are attached to the beta-diketone's scaffold, C-H homolytic bond cleavage is always favored with respect to O-H bond scission.


Subject(s)
Computer Simulation , Ketones/chemistry , Platinum/chemistry , Thermodynamics , Ligands , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...