Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
J Anim Breed Genet ; 141(6): 628-642, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38686591

ABSTRACT

The beef cattle industry has experienced a shift driven by a market demand for healthier meat, cost efficiency and environmental sustainability in recent years. Consequently, there has been a growing focus on the fatty acids content and functions of meat in cattle breeding programmes. Besides, a deeper understanding of the biological mechanisms influencing the expression of different phenotypes related to fatty acid profiles is crucial. In this study, we aimed to identify Single-Nucleotide Variants (SNV) and Insertion/Deletion (InDels) DNA variants in candidate genes related to fatty acid profiles described in genomic, transcriptomic and proteomic studies conducted in beef cattle breeds. Utilizing whole-genome re-sequencing data from Brazilian locally adapted bovine breeds, namely Caracu and Pantaneiro, we identified SNVs and InDels associated with 23,947 genes. From these, we identified 318 candidate genes related to fatty acid profiles that contain variants. Subsequently, we select only genes with SNVs and InDels in their promoter, 5' UTR and coding region. Through the gene-biological process network, approximately 19 genes were highlighted. Furthermore, considering the studied trait and a literature review, we selected the main transcription factors (TF). Functional analysis via gene-TF network allowed us to identify the 30 most likely candidate genes for meat fatty acid profile in cattle. LIPE, MFSD2A and SREBF1 genes were highlighted in networks due to their biological importance. Further dissection of these genes revealed 15 new variants found in promoter regions of Caracu and Pantaneiro sequences. The gene networks facilitated a better functional understanding of genes and TF, enabling the identification of variants potentially related to the expression of candidate genes for meat fatty acid profiles in cattle.


Subject(s)
Fatty Acids , INDEL Mutation , Polymorphism, Single Nucleotide , Transcription Factors , Cattle/genetics , Animals , Fatty Acids/metabolism , Transcription Factors/genetics , Polymorphism, Single Nucleotide/genetics , Brazil , Meat/analysis , Breeding
2.
PLoS One ; 18(4): e0284085, 2023.
Article in English | MEDLINE | ID: mdl-37036840

ABSTRACT

Studying structural variants that can control complex traits is relevant for dairy cattle production, especially for animals that are tolerant to breeding conditions in the tropics, such as the Dairy Gir cattle. This study identified and characterized high confidence copy number variation regions (CNVR) in the Gir breed genome. A total of 38 animals were whole-genome sequenced, and 566 individuals were genotyped with a high-density SNP panel, among which 36 animals had both sequencing and SNP genotyping data available. Two sets of high confidence CNVR were established: one based on common CNV identified in the studied population (CNVR_POP), and another with CNV identified in sires with both sequence and SNP genotyping data available (CNVR_ANI). We found 10 CNVR_POP and 45 CNVR_ANI, which covered 1.05 Mb and 4.4 Mb of the bovine genome, respectively. Merging these CNV sets for functional analysis resulted in 48 unique high confidence CNVR. The overlapping genes were previously related to embryonic mortality, environmental adaptation, evolutionary process, immune response, longevity, mammary gland, resistance to gastrointestinal parasites, and stimuli recognition, among others. Our results contribute to a better understanding of the Gir breed genome. Moreover, the CNV identified in this study can potentially affect genes related to complex traits, such as production, health, and reproduction.


Subject(s)
DNA Copy Number Variations , Genome , Cattle/genetics , Animals , DNA Copy Number Variations/genetics , Genotype , Multifactorial Inheritance , Biological Evolution , Polymorphism, Single Nucleotide
3.
Trop Anim Health Prod ; 52(6): 3869-3883, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33094421

ABSTRACT

Brazil is one of the world's largest milk producers. Several scientific studies have been developed related to landscape analyses that combine genetic with landscape structure data. In the present study, we aimed to analyze the relationship between genetic, environmental, and socioeconomic aspects of production in Girolando cattle in Brazil, as well as verify the spatial patterns of its genetic diversity. Genetic values and accuracy of 46,289 animals were used as well as information from DNA of 310 Girolando animals. Canonic, discriminant, and cluster analyses were conducted in SAS® and K-means method in ArcGIS 10.3 software. The relationship between genetic and geographic distance was analyzed using different methods in software Alleles in Space®. Clusters with animals with higher genetic values for milk production are located in municipalities with lower gross domestic product, fewer family-based establishments, and lower human development index. These clusters are associated with regions with higher area planted with crops, lower percentage of pastures that were less degraded, higher humidity, lower temperature range, and lower normalized difference vegetation index (NDVI) values. The greater the geographical distance between groups of animals, the greater the genetic distance between them with a significant distinction over 504 km. There is high genetic heterogeneity among animals. From these results, it will be possible to develop methodologies for better evaluation of the animals within the production systems.


Subject(s)
Cattle/physiology , Dairying , Environment , Genetic Variation , Animals , Brazil , Breeding , Cattle/genetics , Female , Socioeconomic Factors
4.
J Dairy Sci ; 103(11): 10347-10360, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32896396

ABSTRACT

Milk production is economically important to the Brazilian agribusiness, and the majority of the country's milk production derives from Girolando (Gir × Holstein) cows. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with 305-d milk yield (305MY) in Girolando cattle. In addition, we investigated the SNP-specific variances for Holstein and Gir breeds of origin within the sequence of candidate genes. A single-step genomic BLUP procedure was used to identify QTL associated with 305MY, and the most likely candidate genes were identified through follow-up analyses. Genomic breeding values specific for Holstein and Gir were estimated in the Girolando animals using a model that uses breed-specific partial relationship matrices, which were converted to breed of origin SNP effects. Differences between breed of origin were evaluated by comparing estimated SNP variances between breeds. From 10 genome regions explaining most additive genetic variance for 305MY in Girolando cattle, 7 candidate genes were identified on chromosomes 1, 4, 6, and 26. Within the sequence of these 7 candidate genes, Gir breed of origin SNP alleles showed the highest genetic variance. These results indicated QTL regions that could be further explored in genomic selection panels and which may also help in understanding the gene mechanisms involved in milk production in the Girolando breed.


Subject(s)
Cattle/genetics , Genome-Wide Association Study/veterinary , Genomics , Milk/metabolism , Quantitative Trait Loci/genetics , Alleles , Animals , Brazil , Breeding , Cattle/physiology , Female , Phenotype , Polymorphism, Single Nucleotide/genetics
5.
Int J Biometeorol ; 64(11): 1981-1983, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32691150

ABSTRACT

Tight junctions are almost impermeable structures located near the apical border of epithelial cells; increase in the permeability of mammary gland cells' tight junctions may alter milk composition and its suitability for industrialization. Sixteen Holstein dairy cows were studied to evaluate mammary gland cells' tight junction permeability (indicated by plasma lactose levels) from cows producing stable or unstable milk to ethanol at 72 °GL concentration. Rectal temperature, respiratory rate and milk parameters were also compared and weather conditions (temperature-humidity index) monitored. Temperature-humidity index did not vary for cows producing stable or unstable milk, so there were no differences in physiological traits. Cows producing unstable milk presented elevated tight junctions' permeability, probably due to higher days in milk. The odds of cows producing unstable milk (clots formation when mixed with ethanol below or equal 72 °GL) increases according to elevations in days in milk and tight junction permeability.


Subject(s)
Milk , Tight Junctions , Animals , Cattle , Ethanol , Female , Lactation , Mammary Glands, Animal , Permeability
6.
J Dairy Sci ; 102(9): 8148-8158, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31279558

ABSTRACT

Heat stress is an important issue in the global dairy industry. In tropical areas, an alternative to overcome heat stress is the use of crossbred animals or synthetic breeds, such as the Girolando. In this study, we performed a genome-wide association study (GWAS) and post-GWAS analyses for heat stress in an experimental Gir × Holstein F2 population. Rectal temperature (RT) was measured in heat-stressed F2 animals, and the variation between 2 consecutive RT measurements (ΔRT) was used as the dependent variable. Illumina BovineSNP50v1 BeadChip (Illumina Inc., San Diego, CA) and single-SNP approach were used for GWAS. Post-GWAS analyses were performed by gene ontology terms enrichment and gene-transcription factor (TF) networks, generated from enriched TF. The breed origin of marker alleles in the F2 population was assigned using the breed of origin of alleles (BOA) approach. Heritability and repeatability estimates (± standard error) for ΔRT were 0.13 ± 0.08 and 0.29 ± 0.06, respectively. Association analysis revealed 6 SNP significantly associated with ΔRT. Genes involved with biological processes in response to heat stress effects (LIF, OSM, TXNRD2, and DGCR8) were identified as putative candidate genes. After performing the BOA approach, the 10% of F2 animals with the lowest breeding values for ΔRT were classified as low-ΔRT, and the 10% with the highest breeding values for ΔRT were classified as high-ΔRT. On average, 49.4% of low-ΔRT animals had 2 alleles from the Holstein breed (HH), and 39% had both alleles from the Gir breed (GG). In high-ΔRT animals, the average proportion of animals for HH and GG were 1.4 and 50.2%, respectively. This study allowed the identification of candidate genes for ΔRT in Gir × Holstein crossbred animals. According to the BOA approach, Holstein breed alleles could be associated with better response to heat stress effects, which could be explained by the fact that Holstein animals are more affected by heat stress than Gir animals and thus require a genetic architecture to defend the body from the deleterious effects of heat stress. Future studies can provide further knowledge to uncover the genetic architecture underlying heat stress in crossbred cattle.


Subject(s)
Cattle/genetics , Gene Regulatory Networks , Genome-Wide Association Study/veterinary , Heat-Shock Response/genetics , Quantitative Trait Loci/genetics , Alleles , Animals , Breeding , Cattle/physiology , Dairying , Female , Male
7.
Vet Sci ; 5(4)2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30513897

ABSTRACT

The Indubrasil breed was developed in the Brazilian region called Triângulo Mineiro as a result of a cross between zebu cattle. Initially, it was used as a terminal cross and currently it represents approximately 4.45% of all the Brazilian zebu cattle. Studies were conducted to estimate genetic parameters in the Indubrasil using pedigree information, however, until now, no study has been developed using large-scale genomic markers in this breed. Pedigree information are widely used to investigate population parameters; however, they can neglect some estimates when compared to the use of genomic markers. Therefore, the objective of this study was to investigate the population structure and the genetic diversity of Indubrasil cattle using a high-density Single Nucleotide Polymorphism (SNP) panel (Illumina BovineHD BeadChip 700k). Levels of genomic homozygosity were evaluated using three different approaches: Runs of homozygosity (FROH), % of homozygosis (FSNP), and inbreeding coefficient (Fx). Further, Runs of Homozygosity (ROH) segments conserved among the animals were investigated to identify possible regions associated with the breed characteristics. Our results indicate that even the Indubrasil breed having a small effective population size, the levels of homozygosity (FROH = 0.046) are still small. This was possibly caused by the cross conducted among different breeds for its development. It suggests no immediate risks associated with loss of genetic variation. This information might be used in breeding programs, for the breed conservation and for the expansion of the Indubrasil breed.

8.
J Dairy Sci ; 101(12): 11020-11032, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30243625

ABSTRACT

Rhipicephalus (Boophilus) microplus is the main cattle ectoparasite in tropical areas. Gir × Holstein crossbred cows are well adapted to different production systems in Brazil. In this context, we performed genome-wide association study (GWAS) and post-GWAS analyses for R. microplus resistance in an experimental Gir × Holstein F2 population. Single nucleotide polymorphisms (SNP) identified in GWAS were used to build gene networks and to investigate the breed of origin for its alleles. Tick artificial infestations were performed during the dry and rainy seasons. Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) and single-step BLUP procedure was used for GWAS. Post-GWAS analyses were performed by gene ontology terms enrichment and gene transcription factors networks, generated from enriched transcription factors, identified from the promoter sequences of selected gene sets. The genetic origin of marker alleles in the F2 population was assigned using the breed of origin of alleles approach. Heritability estimates for tick counts were 0.40 ± 0.11 in the rainy season and 0.54 ± 0.11 in the dry season. The top ten 0.5-Mbp windows with the highest percentage of genetic variance explained by SNP markers were found in chromosomes 10 and 23 for both the dry and rainy seasons. Gene network analyses allowed the identification of genes involved with biological processes relevant to immune system functions (TREM1, TREM2, and CD83). Gene-transcription factors network allowed the identification of genes involved with immune functions (MYO5A, TREML1, and PRSS16). In resistant animals, the average proportion of animals showing significant SNPs with paternal and maternal alleles originated from Gir breed was 44.8% whereas the proportion of animals with both paternal and maternal alleles originated from Holstein breed was 11.3%. Susceptible animals showing both paternal and maternal alleles originated from Holstein breed represented 44.6% on average, whereas both paternal and maternal alleles originated from Gir breed animals represented 9.3%. This study allowed us to identify candidate genes for tick resistance in Gir × Holstein crossbreds in both rainy and dry seasons. According to the origin of alleles analysis, we found that most animals classified as resistant showed 2 alleles from Gir breed, while the susceptible ones showed alleles from Holstein. Based on these results, the identified genes may be thoroughly investigated in additional experiments aiming to validate their effects on tick resistance phenotype in cattle.


Subject(s)
Cattle Diseases/parasitology , Disease Resistance/genetics , Genome-Wide Association Study/veterinary , Rhipicephalus/physiology , Tick Infestations/veterinary , Alleles , Animals , Brazil , Breeding , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/genetics , Female , Genetic Variation , Male , Phenotype , Polymorphism, Single Nucleotide , Seasons , Species Specificity , Tick Infestations/epidemiology , Tick Infestations/genetics
9.
J Dairy Sci ; 100(12): 9623-9634, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28987572

ABSTRACT

The objective of this study was to investigate different strategies for genotype imputation in a population of crossbred Girolando (Gyr × Holstein) dairy cattle. The data set consisted of 478 Girolando, 583 Gyr, and 1,198 Holstein sires genotyped at high density with the Illumina BovineHD (Illumina, San Diego, CA) panel, which includes ∼777K markers. The accuracy of imputation from low (20K) and medium densities (50K and 70K) to the HD panel density and from low to 50K density were investigated. Seven scenarios using different reference populations (RPop) considering Girolando, Gyr, and Holstein breeds separately or combinations of animals of these breeds were tested for imputing genotypes of 166 randomly chosen Girolando animals. The population genotype imputation were performed using FImpute. Imputation accuracy was measured as the correlation between observed and imputed genotypes (CORR) and also as the proportion of genotypes that were imputed correctly (CR). This is the first paper on imputation accuracy in a Girolando population. The sample-specific imputation accuracies ranged from 0.38 to 0.97 (CORR) and from 0.49 to 0.96 (CR) imputing from low and medium densities to HD, and 0.41 to 0.95 (CORR) and from 0.50 to 0.94 (CR) for imputation from 20K to 50K. The CORRanim exceeded 0.96 (for 50K and 70K panels) when only Girolando animals were included in RPop (S1). We found smaller CORRanim when Gyr (S2) was used instead of Holstein (S3) as RPop. The same behavior was observed between S4 (Gyr + Girolando) and S5 (Holstein + Girolando) because the target animals were more related to the Holstein population than to the Gyr population. The highest imputation accuracies were observed for scenarios including Girolando animals in the reference population, whereas using only Gyr animals resulted in low imputation accuracies, suggesting that the haplotypes segregating in the Girolando population had a greater effect on accuracy than the purebred haplotypes. All chromosomes had similar imputation accuracies (CORRsnp) within each scenario. Crossbred animals (Girolando) must be included in the reference population to provide the best imputation accuracies.


Subject(s)
Cattle/genetics , Genotype , Polymorphism, Single Nucleotide , Animals , Breeding , Female , Haplotypes
10.
BMC Genet ; 16: 99, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26250698

ABSTRACT

BACKGROUND: Genotype imputation has been used to increase genomic information, allow more animals in genome-wide analyses, and reduce genotyping costs. In Brazilian beef cattle production, many animals are resulting from crossbreeding and such an event may alter linkage disequilibrium patterns. Thus, the challenge is to obtain accurately imputed genotypes in crossbred animals. The objective of this study was to evaluate the best fitting and most accurate imputation strategy on the MA genetic group (the progeny of a Charolais sire mated with crossbred Canchim X Zebu cows) and Canchim cattle. The data set contained 400 animals (born between 1999 and 2005) genotyped with the Illumina BovineHD panel. Imputation accuracy of genotypes from the Illumina-Bovine3K (3K), Illumina-BovineLD (6K), GeneSeek-Genomic-Profiler (GGP) BeefLD (GGP9K), GGP-IndicusLD (GGP20Ki), Illumina-BovineSNP50 (50K), GGP-IndicusHD (GGP75Ki), and GGP-BeefHD (GGP80K) to Illumina-BovineHD (HD) SNP panels were investigated. Seven scenarios for reference and target populations were tested; the animals were grouped according with birth year (S1), genetic groups (S2 and S3), genetic groups and birth year (S4 and S5), gender (S6), and gender and birth year (S7). Analyses were performed using FImpute and BEAGLE software and computation run-time was recorded. Genotype imputation accuracy was measured by concordance rate (CR) and allelic R square (R(2)). RESULTS: The highest imputation accuracy scenario consisted of a reference population with males and females and a target population with young females. Among the SNP panels in the tested scenarios, from the 50K, GGP75Ki and GGP80K were the most adequate to impute to HD in Canchim cattle. FImpute reduced computation run-time to impute genotypes from 20 to 100 times when compared to BEAGLE. CONCLUSION: The genotyping panels possessing at least 50 thousands markers are suitable for genotype imputation to HD with acceptable accuracy. The FImpute algorithm demonstrated a higher efficiency of imputed markers, especially in lower density panels. These considerations may assist to increase genotypic information, reduce genotyping costs, and aid in genomic selection evaluations in crossbred animals.


Subject(s)
Genome-Wide Association Study , Genotype , Red Meat , Alleles , Animals , Brazil , Breeding , Cattle , Crosses, Genetic , Female , Linkage Disequilibrium , Male , Phenotype , Polymorphism, Single Nucleotide
11.
Vet Parasitol ; 205(1-2): 307-17, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25108850

ABSTRACT

Tick bites promote activation of an inflammatory process that is influenced by bovine genetic composition and its history of previous exposure. Taurine and indicine breeds are known to differ on its immune response development against Rhipicephalus microplus. Nevertheless, further investigation about the complex molecular pathways involved in the development of immune response to tick infestation in cattle presenting the same genetic background is mandatory. The aim of this work was to access the early immune response triggered by R. microplus larvae attachment in previously selected resistant and susceptible animals in a bovine F2 population derived from Gyr (Bos indicus)×Holstein (Bos taurus) crosses. Microarray data analysis of RNA samples from tick infested skin was used to evaluate the gene expression at 0, 24 and 48h after R. microplus larvae attachment. Our experimental design allowed us to deeply explore the immune response related to R. microplus infestation avoiding the innate differences between these breeds. The differentially expressed genes found reveal networks and pathways that suggest a key role of lipid metabolism in inflammation control and impairment of tick infestation in resistant animals. Acute phase response also seems to be impaired in susceptible animals. These results provide new insights about early immune response against ticks and raise the possibility of using immunomodulation processes to improve and develop novel tools for tick control.


Subject(s)
Cattle Diseases/immunology , Microarray Analysis/veterinary , Rhipicephalus/immunology , Tick Infestations/veterinary , Animals , Cattle , Female , Gene Expression Profiling/veterinary , Immunity, Innate , Inflammation/veterinary , Larva , Skin/immunology , Tick Infestations/immunology
12.
BMC Genomics ; 11: 280, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20433753

ABSTRACT

BACKGROUND: In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) x Holstein (Bos taurus) cross. RESULTS: Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. CONCLUSIONS: The experimental F2 population derived from Gyr x Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.


Subject(s)
Cattle Diseases/genetics , Cattle Diseases/immunology , Cattle/genetics , Cattle/immunology , Genome-Wide Association Study , Quantitative Trait Loci , Tick Infestations/veterinary , Animals , Female , Rhipicephalus/physiology , Tick Infestations/genetics , Tick Infestations/immunology
SELECTION OF CITATIONS
SEARCH DETAIL