Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 115(30): 9401-9, 2011 Aug 04.
Article in English | MEDLINE | ID: mdl-21678972

ABSTRACT

Calorimetric measurements are expected to provide useful data regarding the relative stability of α- versus ß-amino acid isomers, which, in turn, may help us to understand why nature chose α- instead of ß-amino acids for the formation of the biomolecules that are essential constituents of life on earth. The present study is a combination of the experimental determination of the enthalpy of formation of N-benzyl-ß-alanine, and high-level ab initio calculations of its molecular structure. The experimentally determined standard molar enthalpy of formation of N-benzyl-ß-alanine in gaseous phase at T = 298.15 K is -(298.8 ± 4.8) kJ·mol(-1), whereas its G3(MP2)//B3LYP-calculated enthalpy of formation is -303.7 kJ·mol(-1). This value is in very good agreement with the experimental one. Although the combustion experiments of N-benzyl-α-alanine were unsuccessful, its calculated enthalpy of formation is -310.7 kJ·mol(-1); thus, comparison with the corresponding experimental enthalpy of formation of N-benzyl-ß-alanine, -(298.8 ± 4.8) kJ/mol, is in line with the concept that the more branched amino acid (α-alanine) is intrinsically more stable than the linear ß-amino acid, ß-alanine.


Subject(s)
Aminobutyrates/chemistry , Models, Chemical , Calorimetry, Differential Scanning , Isomerism , Molecular Conformation , Thermodynamics
2.
J Phys Chem B ; 114(49): 16471-80, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21087063

ABSTRACT

This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and ß-alanine. The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline α-alanine (DL) and ß-alanine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and H2O(l), measured by static-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of both amino acids were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation at T = 298.15 K was derived from the Clausius−Clapeyron equation. The experimental values were used to calculate the standard (p° = 0.1 MPa) enthalpy of formation of α-alanine (DL) and ß-alanine in the gaseous phase, Δ(f)H(m)°(g), as −426.3 ± 2.9 and −421.2 ± 1.9 kJ·mol(−1), respectively. Standard ab initio molecular orbital calculations at the G3 level were performed. Enthalpies of formation, using atomization reactions, were calculated and compared with experimental data. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out.


Subject(s)
Alanine/chemistry , Computer Simulation , Thermodynamics , beta-Alanine/chemistry , Calorimetry, Differential Scanning , Molecular Structure
3.
J Phys Chem B ; 114(32): 10530-40, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20734495

ABSTRACT

This paper reports an experimental and theoretical study of the standard (p(degrees) = 0.1 MPa) molar enthalpies of formation at T = 298.15 K of the sulfur-containing amino acids l-cysteine [CAS 52-90-4] and l-cystine [CAS 56-89-3]. The standard (p(degrees) = 0.1 MPa) molar enthalpies of formation of crystalline l-cysteine and l-cystine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g) and H2SO4.115H2O, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of l-cysteine were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpy of sublimation, at T = 298.15 K, was derived from the Clausius-Clapeyron equation. The experimental values were used to calculate the standard (p(degrees) = 0.1 MPa) enthalpy of formation of l-cysteine in the gaseous phase, DeltafH(degrees)m(g) = -382.6 +/- 1.8 kJ x mol-1. Due to the low vapor pressures of l-cystine and since this compound decomposes at the temperature range required for a possible sublimation, it was not possible to determine its enthalpy of sublimation. Standard ab initio molecular orbital calculations at the G3(MP2)//B3LYP and/or G3 levels were performed. Enthalpies of formation, using atomization and isodesmic reactions, were calculated and compared with experimental data. A value of -755 +/- 10 kJ x mol-1 was estimated for the enthalpy of formation of cystine. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out. Finally, bond dissociation enthalpies (BDE) of S-H, S-S, and C-S bonds, and enthalpies of formation of l-cysteine-derived radicals, were also computed.


Subject(s)
Amino Acids/chemistry , Cysteine/chemistry , Cystine/chemistry , Sulfhydryl Compounds/chemistry , Sulfur/chemistry , Computer Simulation , Humans , Molecular Conformation , Molecular Structure , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...