Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951477

ABSTRACT

Cotton (Gossypium hirsutum, Malvaceae) is the most important fiber crop in the world. There are published records of many fungal pathogens attacking Gossypium spp., causing numerous diseases, including powdery mildews. Recently, in 2022, non-cultivated spontaneous G. hirsutum plants bearing powdery mildews symptoms were found at roadsides in two municipalities of the state of Minas Gerais (Brazil): Varginha and Ubá. Such localities are situated ca. 260 km apart, suggesting a broader distribution of this fungus-host association in Brazil. Samples were taken to the laboratory, and an Ovulariopsis-like, asexual stage of Phyllactinia, was identified forming amphigenous colonies, that were more evident, white and cottony, abaxially. Morphological and molecular data- of the ITS and LSU regions- have shown that colonies from those two samples were of the same fungus species, belonging to a previously unknown species of Erysiphaceae (Ascomycota). The fungus fits into the Phyllactinia clade and is described herein as the new species Phyllactinia gossypina sp. nov. This new species belongs to the 'basal Phyllactinia group', a lineage that includes species known only from the Americas. This report expands the list of pathogenic fungi on cotton. It is early to anticipate whether this new powdery mildew represents a threat to cultivated cotton, which is a major crop in Brazil. Nevertheless, further studies about its infectivity to commercial cotton varieties are recommended, since all known Erysiphaceae are specialized obligate plant parasites and several species cause major losses to important crops.

2.
Braz J Microbiol ; 54(3): 1899-1914, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37389796

ABSTRACT

The myrtle rust (MR), caused by Austropuccinia psidii, is a worldwide threat to the cultivated and wild Myrtaceae. Originally from the neotropics, it has spread to North America, Africa, and Asia and has reached geographically isolated areas in the Pacific and Australasia. It is attacking native species in those new ranges and is still spreading and causing great concern for the damage caused to endemic Myrtaceae, and to the environment. Classical biological control is regarded as the most sustainable management option for mitigating such biological invasions. However, there are no examples of introductions of host-specific co-evolved natural enemies of plant pathogens, from their native range, as a management strategy for plant pathogens. In order to explore this neglected approach, a survey of potential fungal natural enemies of A. psidii was initiated recently in the state of Minas Gerais (Brazil). Several purported mycoparasites have been collected from A. Psidii pustules formed on myrtaceous hosts. This included some isolates of dematiaceous fungi recognized as having a Cladosporium-like morphology. Here we present the results of the investigation aimed at elucidating their identity through a polyphasic taxonomic approach. Besides morphological and cultural features, molecular analyses using sequences of translation elongation factor 1-α (EF1) and actin (ACT) were performed. The combination of data generated is presented herein and placed all Cladosporium-like isolates in six species of Cladosporium, namely, Cladosporium angulosum, C. anthropophilum, C. bambusicola, C. benschii, C. guizhouense, and C. macadamiae. None of these have ever been recorded in association with A. psidii. Now, with the identification of these isolates at hand, an evaluation of biocontrol potential of these fungi will be initiated. In contrast with the ready finding of fungicolous (possibly mycoparasitic) fungi on MR in this study, no evidence of those was recorded from Australasia until now.


Subject(s)
Basidiomycota , Myrtus , Brazil , Cladosporium/genetics , Basidiomycota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...