Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15509, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28593951

ABSTRACT

Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin ß1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the ß1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor ß1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.


Subject(s)
Biocompatible Materials/chemistry , Extracellular Matrix/metabolism , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Animals , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelium/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Integrin alpha3beta1/metabolism , Laminin/metabolism , Mammary Glands, Human/cytology , Matrix Metalloproteinase 2/metabolism , Membranes, Artificial , Mice , Peritoneum/metabolism , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...