Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 8(3)2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31540480

ABSTRACT

The basis of drug resistance in Mycobacterium abscessus is still poorly understood. Nevertheless, as seen in other microorganisms, the efflux of antimicrobials may also play a role in M. abscessus drug resistance. Here, we investigated the role of efflux pumps in clarithromycin resistance using nine clinical isolates of M. abscessus complex belonging to the T28 erm(41) sequevar responsible for the inducible resistance to clarithromycin. The strains were characterized by drug susceptibility testing in the presence/absence of the efflux inhibitor verapamil and by genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. Efflux pump gene expression was studied by RT-qPCR upon exposure to clarithromycin. Verapamil increased the susceptibility to clarithromycin from 4- to ≥64-fold. The efflux pump genes MAB_3142 and MAB_1409 were found consistently overexpressed. The results obtained demonstrate that the T28 erm(41) polymorphism is not the sole cause of the inducible clarithromycin resistance in M. abscessus subsp. abscessus or bolletii with efflux activity providing a strong contribution to clarithromycin resistance. These data highlight the need for further studies on M. abscessus efflux response to antimicrobial stress in order to implement more effective therapeutic regimens and guidance in the development of new drugs against these bacteria.

2.
Planta Med ; 84(17): 1265-1270, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29913527

ABSTRACT

New drugs are needed to treat infections with antimicrobial-resistant Mycobacterium abscessus; therefore, we evaluated usnic acid as an antimicrobial agent and efflux inhibitor (EI) against M. abscessus. Usnic acid showed antimicrobial activity, and synergistically, the EI verapamil increased this activity. In addition, when we evaluated the interaction of antimicrobials with usnic acid, the increase of their activity was observed. Finally, usnic acid showed an efflux inhibitory effect between the classical EIs verapamil and carbonyl cyanide m-chlorophenylhydrazine. In conclusion, usnic acid showed both antimicrobial and EI activity, indicating that this natural compound may be a promising scaffold for new drugs against this difficult-to-treat microorganism.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzofurans/pharmacology , Mycobacterium abscessus/drug effects , Anti-Infective Agents/pharmacology , Drug Interactions , Ethidium/metabolism , Microbial Sensitivity Tests , Mycobacterium abscessus/metabolism
3.
Bioorg Med Chem ; 20(21): 6482-8, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23000294

ABSTRACT

Twenty-three naphthoimidazoles and six naphthoxazoles were synthesised and evaluated against susceptible and rifampicin- and isoniazid-resistant strains of Mycobacterium tuberculosis. Among all the compounds evaluated, fourteen presented MIC values in the range of 0.78 to 6.25 µg/mL against susceptible and resistant strains of M. tuberculosis. Five structures were solved by X-ray crystallographic analysis. These substances are promising antimycobacterial prototypes.


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Azoles/pharmacology , Imidazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Naphthoquinones/pharmacology , Oxazoles/pharmacology , Antitubercular Agents/chemistry , Azoles/chemical synthesis , Azoles/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Oxazoles/chemical synthesis , Oxazoles/chemistry , Structure-Activity Relationship
4.
BMC Microbiol ; 9: 39, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19228426

ABSTRACT

BACKGROUND: Mutations associated with resistance to rifampin or streptomycin have been reported for W/Beijing and Latin American Mediterranean (LAM) strain families of Mycobacterium tuberculosis. A few studies with limited sample sizes have separately evaluated mutations in katG, ahpC and inhA genes that are associated with isoniazid (INH) resistance. Increasing prevalence of INH resistance, especially in high tuberculosis (TB) prevalent countries is worsening the burden of TB control programs, since similar transmission rates are noted for INH susceptible and resistant M. tuberculosis strains. RESULTS: We, therefore, conducted a comprehensive evaluation of INH resistant M. tuberculosis strains (n = 224) from three South American countries with high burden of drug resistant TB to characterize mutations in katG, ahpC and inhA gene loci and correlate with minimal inhibitory concentrations (MIC) levels and spoligotype strain family. Mutations in katG were observed in 181 (80.8%) of the isolates of which 178 (98.3%) was contributed by the katG S315T mutation. Additional mutations seen included oxyR-ahpC; inhA regulatory region and inhA structural gene. The S315T katG mutation was significantly more likely to be associated with MIC for INH >or=2 microg/mL. The S315T katG mutation was also more frequent in Haarlem family strains than LAM (n = 81) and T strain families. CONCLUSION: Our data suggests that genetic screening for the S315T katG mutation may provide rapid information for anti-TB regimen selection, epidemiological monitoring of INH resistance and, possibly, to track transmission of INH resistant strains.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Isoniazid/pharmacology , Mutation, Missense , Mycobacterium tuberculosis/drug effects , Tuberculosis/microbiology , Bacterial Typing Techniques , Cluster Analysis , DNA Fingerprinting , DNA, Bacterial/genetics , Genotype , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , South America
5.
Antimicrob Agents Chemother ; 52(8): 2947-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18541729

ABSTRACT

The MIC for streptomycin in the presence of efflux pump (EP) inhibitors and the sequencing of rpsL, rrs, and gidB genes provided evidence for the possible participation of EP in low-level streptomycin (STR) resistance of some isolates without mutations. Mutation in the gidB gene and an EP could act synergistically to confer low STR resistance.


Subject(s)
Mutation , Mycobacterium tuberculosis/drug effects , Streptomycin/pharmacology , Tuberculosis, Multidrug-Resistant/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Mutational Analysis , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...