Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(6): 4678-84, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905516

ABSTRACT

Anisotropic rutile/anatase TiO2 nanoparticles (AB-TiO2) were synthesized by the Ti-peroxo complex method. Their photocatalytic activity in the degradation of Rhodamine B (RhB) was evaluated and compared to that of commercial TiO2 P25 and TiO2 obtained through the benzyl alcohol route (OB-TiO2). The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR in DRIFT mode), Field-Emission Scanning Electronic Microscopy (FEG-SEM), N2 physisorption and UV-visible spectroscopy. Photodegradation of RhB was carried out under visible light and the results revealed a remarkable photocatalytic activity of the AB-TiO2 in terms of surface area. The excellent performance of the AB-TiO2 was explained in light of the synergistic effect of the coexistence of anatase/rutile phases, anisotropy and irreversible adsorption of organic species during sol-gel synthesis. UV-visible measurements also indicated that N-deethylation and photobleaching mechanisms occur to different extents, depending on the surface composition of the photocatalyst.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Titanium/chemistry , Catalysis , Light , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Nanostructures/radiation effects , Particle Size , Surface Properties/radiation effects , Titanium/radiation effects
2.
Chemistry ; 17(41): 11515-9, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21953929

ABSTRACT

The development of reliable nanostructured devices is intrinsically dependent on the description and manipulation of materials' properties at the atomic scale. Consequently, several technological advances are dependent on improvements in the characterization techniques and in the models used to describe the properties of nanosized materials as a function of the synthesis parameters. The evaluation of doping element distributions in nanocrystals is directly linked to fundamental aspects that define the properties of the material, such as surface-energy distribution, nanoparticle shape, and crystal growth mechanism. However, this is still one of the most challenging tasks in the characterization of materials because of the required spatial resolution and other various restrictions from quantitative characterization techniques, such as sample degradation and signal-to-noise ratio. This paper addresses the dopant segregation characterization for two antimony-doped tin oxide (Sb:SnO(2)) systems, with different Sb doping levels, by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface-energy ab initio calculations. The applied methodology provided three-dimensional models with geometrical and compositional information that were demonstrated to be self-consistent and correspond to the systems' mean properties. The results evidence that the dopant distribution configuration is dependent on the system composition and that dopant atom redistribution may be an active mechanism for the overall surface-energy minimization.

3.
Nanoscale ; 3(4): 1910-6, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21423940

ABSTRACT

In this work, we describe a kinetically controlled crystallization process assisted by an oriented attachment (OA) mechanism based on a nonaqueous sol-gel synthetic method (specifically, the reaction of titanium(IV) chloride (TiCl(4)) with n-octanol) to prepare re-crystallized anatase TiO(2) mesocrystals (single crystal). The kinetics study revealed a multi-step and hierarchical process controlled by OA, and a high resolution transmission electron microscopy (HRTEM) analysis clearly shows that the synthesized mesocrystal presents a truncated bipyramidal Wulff shape, indicating that its surface is dominated by {101} facets. This shape is developed during the recrystallization step. The material developed here displayed superior photocatalytic activity under visible light irradiation compared to TiO(2)-P25 as a benchmarking.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Titanium/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
4.
Chem Commun (Camb) ; 47(11): 3117-9, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21258701

ABSTRACT

This work reports a detailed characterization of an anomalous oriented attachment behaviour for SnO(2) nanocrystals. Our results evidenced an anisotropic growth for two identical <110> directions, which are equivalent according to the SnO(2) crystallographic structure symmetry. A hypothesis is proposed to describe this behaviour.

5.
J Am Chem Soc ; 131(40): 14544-8, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19807192

ABSTRACT

Modeling of nanocrystals supported by advanced morphological and chemical characterization is a unique tool for the development of reliable nanostructured devices, which depends on the ability to synthesize and characterize materials on the atomic scale. Among the most significant challenges in nanostructural characterization is the evaluation of crystal growth mechanisms and their dependence on the shape of nanoparticles and the distribution of doping elements. This paper presents a new strategy to characterize nanocrystals, applied here to antimony-doped tin oxide (Sb-SnO(2)) (ATO) by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface energy ab initio calculations. The results show that the Wulff construction can not only describe the shape of nanocrystals as a function of surface energy distribution but also retrieve quantitative information on dopant distribution by the dimensional analysis of nanoparticle shapes. In addition, a novel three-dimensional evaluation of an oriented attachment growth mechanism is provided in the proposed methodology. This procedure is a useful approach for faceted nanocrystal shape modeling and indirect quantitative evaluation of dopant spatial distribution, which are difficult to evaluate by other techniques.

6.
Chemphyschem ; 10(5): 841-6, 2009 Mar 23.
Article in English | MEDLINE | ID: mdl-19219870

ABSTRACT

This work focuses on the nonaqueous synthesis of antimony-doped tin oxide nanocrystals in the size range of 2-6 nm and the investigation of their solubility in organic solvents (CHCl(3) and THF) in the presence of amphiphilic molecules (oleic acid and oleylamine). To unravel the underlying processes, a set of molecular dynamics simulations is performed involving the compatibility of oleic acid and oleylamine in mixtures with both CHCl(3) and THF. The results show that the method is useful for obtaining the desired oxide, and that the interaction between amphiphilic molecules and solvents can be predicted by molecular dynamics simulations with very good qualitative agreement.

SELECTION OF CITATIONS
SEARCH DETAIL
...