Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(9): 3994-4004, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38226629

ABSTRACT

A three-dimensional terbium(III) coordination polymer of formula [Tb(bttb)0.5(2,5-pzdc)0.5]n (1) [H4bttb = 1,2,4,5-tetrakis(4'-carboxyphenyl)benzene and H2-2,5-pzdc = 2,5-pyrazinedicarboxylic acid] was obtained under hydrothermal conditions. The bttb4- tetraanion in 1 adopts the bridging and chelating-bridging pseudo-oxo coordination modes while the 2,5-pzdc2- dianion exhibits a rather unusual bis-bidentate bridging pseudo-oxo coordination mode, both ligands being responsible for the stiffness of the resulting 3D structure. Solid-state photoluminescent measurements illustrate that 1 exhibits remarkable green luminescence emission, the most intense band occurring in the region of 550 nm (5D4 → 7F5) with lifetimes at the millisecond scale. Thermometric performances of 1 reveal a maximum relative sensitivity (Sm) of 0.76% K-1 at 295 K (δT = 0.05 K), constituting a TbIII ratiometric solid luminescent thermometer over the physiological temperature range. Variable-temperature static (dc) magnetic susceptibility measurements for 1 in the temperature range 2.0-300 K show the expected behavior for the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic terbium(III) ion plus a weak antiferromagnetic interaction through the carboxylate bridges. No significant out-of-phase magnetic susceptibility signals were observed for 1 in the temperature range 2.0-10.0 K, either in the absence or presence of a static dc magnetic field.

2.
Molecules ; 28(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903333

ABSTRACT

Herein, we describe the synthesis, crystal structure, and electronic properties of {[K2(dmso)(H2O)5][Ni2(H2mpba)3]·dmso·2H2O}n (1) and [Ni(H2O)6][Ni2(H2mpba)3]·3CH3OH·4H2O (2) [dmso = dimethyl sulfoxide; CH3OH = methanol; and H4mpba = 1,3-phenylenebis(oxamic acid)] bearing the [Ni2(H2mpba)3]2- helicate, hereafter referred to as {NiII2}. SHAPE software calculations indicate that the coordination geometry of all the NiII atoms in 1 and 2 is a distorted octahedron (Oh) whereas the coordination environments for K1 and K2 atoms in 1 are Snub disphenoid J84 (D2d) and distorted octahedron (Oh), respectively. The {NiII2} helicate in 1 is connected by K+ counter cations yielding a 2D coordination network with sql topology. In contrast to 1, the electroneutrality of the triple-stranded [Ni2(H2mpba)3] 2- dinuclear motif in 2 is achieved by a [Ni(H2O)6]2+ complex cation, where the three neighboring {NiII2} units interact in a supramolecular fashion through four R22(10) homosynthons yielding a 2D array. Voltammetric measurements reveal that both compounds are redox active (with the NiII/NiI pair being mediated by OH- ions) but with differences in formal potentials that reflect changes in the energy levels of molecular orbitals. The NiII ions from the helicate and the counter-ion (complex cation) in 2 can be reversibly reduced, resulting in the highest faradaic current intensities. The redox reactions in 1 also occur in an alkaline medium but at higher formal potentials. The connection of the helicate with the K+ counter cation has an impact on the energy levels of the molecular orbitals; this experimental behavior was further supported by X-ray absorption near-edge spectroscopy (XANES) experiments and computational calculations.

3.
Dalton Trans ; 50(31): 10707-10728, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34308946

ABSTRACT

In this work, we present the synthetic pathway, a refined structural description, complete solid-state characterization and the magnetic properties of four new cobalt(ii) compounds of formulas [Co(H2O)6][Co2(H2mpba)3]·2H2O·0.5dmso (1), [Co(H2O)6][Co2(H2mpba)3]·3H2O·0.5dpss (2), [Co2(H2mpba)2(H2O)4]n·4nH2O (3), and [Co2(H2mpba)2(CH3OH)2(H2O)2]n·0.5nH2O·2ndpss (4) [dpss = 2,2'-dipyridyldisulfide and H4mpba = 1,3-phenylenebis(oxamic) acid], where 2 and 4 were obtained from [Co(dpss)Cl2] (Pre-I) as the source of cobalt(ii). All four compounds are air-stable and were prepared under ambient conditions. 1 and 2 were obtained from a slow diffusion method [cobalt(ii) : H2mpba2- molar ratio used 1 : 1] and their structures are made up of [Co2(H2mpba)3]2- anionic helicate units and [Co(H2O)6]2+ cations, exhibiting supramolecular three-dimensional structures. Interestingly, a supramolecular honeycomb network between the helicate units interacting with each other through R22(10) type hydrogen bonds occurs in 2 hosting one co-crystallized dpss molecule. On the other hand, for the first time, linear (3) and zigzag (4) cobalt(ii) chains were isolated by slow evaporation of stirred solutions of mixed solvents with cobalt(ii) : H2mpba2- in 1 : 2 molar ratio at room temperature. Magnetic measurements of Pre-I revealed a quasi magnetically isolated S = 3/2 spin state with a significant second-order spin-orbit contribution as expected for tetrahedrally coordinated cobalt(ii) ions. The analysis of the variable temperature static (dc) magnetic susceptibility data through first- (1 and 3) and second-order spin-orbit coupling models (2 and 4) reveals the presence of magnetically non-interacting high-spin cobalt(ii) ions with easy-axis (1 and 4)/easy-plane magnetic anisotropies (2 and 4) with low rhombic distortions. Dynamic (ac) magnetic measurements for Pre-I and 1-4 below 8.0 K show that they are examples of field-induced Single-Ion Magnets (SIMs).

SELECTION OF CITATIONS
SEARCH DETAIL
...