Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 77(7): 3187-3197, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33683006

ABSTRACT

BACKGROUND: A variety of abiotic and biotic factors promoting seasonal variation in the population of insect pests. Knowledge of the timing and magnitude of these factors is important for the study of population dynamics and the development of efficient pest management programs. Currently, there are few studies regarding Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) seasonal dynamics in tomato cultivation under open field conditions, either with or without insecticide application. This study aimed to investigate the effects of tomato phenology, climatic factors, and insecticide spraying on the seasonal dynamics of T. absoluta in tomato cultivation under open field conditions, using data from monitoring performed for 3 years. RESULTS: Insecticide, host plant, and climatic conditions can affect T. absoluta life cycles directly over time, resulting in shifts of peaks of the pest. Insecticides for T. absoluta control reduced injury caused by larvae; however, this was not enough to reduce the density below economic injury levels (EIL) during periods of climatic conditions more suitable for population growth. Tuta absoluta densities surpassed EIL more frequently during the tomato plant fruiting stage. The highest densities of mines and damaged fruits occurred during periods of August to January and September to January in crops without and with the application of insecticides, respectively. Regarding the climatic factors, the highest densities of T. absoluta occurred during periods of increasing air temperature and low rainfall. CONCLUSION: This study provides relevant insights into the factors that regulate the dynamics of T. absoluta in tomato cultivation and the decision-making process of control of this pest. © 2021 Society of Chemical Industry.


Subject(s)
Insecticides , Moths , Solanum lycopersicum , Solanum , Animals , Larva , Seasons
2.
Pest Manag Sci ; 75(10): 2706-2715, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30779307

ABSTRACT

BACKGROUND: For the first time, a model was applied at the global scale to investigate the effects of climate change on Dalbulus maidis. D. maidis is the main vector of three plant pathogens of maize crops and has been reported as one of the most important maize pests in Latin America. We modelled the effects of climate change on this pest using three Global Climate Models under two Representative Concentration Pathways (RCPs) using MaxEnt software. RESULTS: Overall, climate change will lead to a decrease in suitable areas for D. maidis. In South America, climate change will decrease the areas suitable for the pest, especially in Brazil. However, Argentina, Chile, Colombia, Ecuador, Peru and Venezuela will have small areas that are highly suitable for the corn leafhopper. Outside the pest's range, Ethiopia, Kenya, Rwanda, Burundi and South Africa also should be concerned about the risk of corn leafhopper invasions in the future because they are projected to have conditions that are highly suitable for this insect in some areas. CONCLUSION: This study allows the relevant countries to increase their quarantine measures and guide researchers to develop new Zea mays varieties that are resistant or tolerant to D. maidis. In addition, the maize-stunting pathogens for the areas are highlighted in this modelling. © 2019 Society of Chemical Industry.


Subject(s)
Animal Distribution , Climate Change , Hemiptera/physiology , Plant Dispersal , Zea mays/physiology , Animals , Models, Biological
3.
Pest Manag Sci ; 75(5): 1346-1353, 2019 May.
Article in English | MEDLINE | ID: mdl-30375149

ABSTRACT

BACKGROUND: Ceratocystis fimbriata recognized among the species that induce mango sudden decline (MSD), causes plant death within a short period. The beetles Hypocryphalus mangiferae and Xyleborus affinis (Curculionidae: Scolytinae) are the vectors of MSD. Thorough understanding of the spatial distribution of the pest is crucial to designing control techniques and drawing up sampling plans. This study aimed to identify the beetles and their dispersal pattern in mango trees in MSD-infected commercial orchards, and the association with the severity of the C. fimbriata infestation. RESULTS: Beetle attacks were observed to be maximal on mango tree trunks revealing severe infestation. From the geostatistical analysis, an aggregated pattern was evident as galleries in the trunks and branches of mango trees. CONCLUSION: This is the first study to employ geostatic tools on a plant scale in MSD-infested mango orchards and to study the incidence of beetle attack. The results may prove a highly effective tool for mango growers, with respect to the management of beetles and MSD, as this will facilitate the monitoring of specific sites where the frequency of beetles and MSD is high. © 2018 Society of Chemical Industry.


Subject(s)
Animal Distribution , Coleoptera/physiology , Mangifera/growth & development , Spatial Analysis , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...