Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 159(Pt 8): 1683-1694, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23704791

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) cause severe human infections and their virulence abilities are not fully understood. Cattle are a key reservoir, and the terminal rectum is the principal site of bacterial carriage. Most STEC possess a pathogenicity island termed the locus of enterocyte effacement (LEE). Nonetheless, LEE-negative STEC have been associated with disease. We found that invasion of LEE-positive and LEE-negative strains was higher for human enterocytic cell lines and for undifferentiated Caco-2 cells. Intracellular bacteria could be detected as early as 5 min after infection and transmission electron microscopy showed bacteria within membrane-bound vacuoles. STEC invasion depended on actin microfilaments and protein kinases. Scanning electron microscopy revealed that bacterial entry was not associated with membrane ruffling. Absence of macropinocytosis or actin rearrangement at the entry points suggests a zipper-like entry mechanism. Disruption of the tight junction by EGTA enhanced invasion of Caco-2 monolayers, and bacterial invasion mostly proceeded through the basolateral pole of enterocytes. STEC persisted within Caco-2 cells for up to 96 h without cell death and bacterial viability increased after 48 h, suggesting intracellular multiplication. The relatively harmless intracellular localization of STEC can be an efficient strategy to prevent its elimination from the bovine intestinal tract.


Subject(s)
Endocytosis , Epithelial Cells/microbiology , Microbial Viability , Shiga-Toxigenic Escherichia coli/physiology , Cell Line , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Time Factors , Vacuoles/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...