Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(32): 11268-11273, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37505905

ABSTRACT

Hollow Ag-Pd nanoparticles have potentially high catalytic performance owing to their larger surface area compared to their corresponding solid nanoparticles. We successfully fabricated hollow Ag-Pd alloy nanodendrites and nanoboxes by using different Pd precursors (H2PdCl4 and Pd(acac)2) to achieve large surface area nanoboxes. Interestingly, the use of a H2PdCl4 precursor led to the formation of hollow nanodendrite structures, whereas the slower reduction of Pd(acac)2 led to the formation of hollow nanoboxes. The microstructure and chemical composition of Ag-Pd nanoparticles and properties of their growth solutions were investigated by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible spectroscopy.

2.
Nanoscale Adv ; 3(9): 2481-2487, 2021 May 04.
Article in English | MEDLINE | ID: mdl-36134156

ABSTRACT

This study presents the synthesis of monodisperse Pd nanoparticles (NPs) stabilized by sodium oleate (NaOL) and hexadecyltrimethylammonium chloride (CTAC). The synthesis was conducted without traditional reductants and Pd-precursors are reduced by NaOL. It was confirmed that the alkyl double bond in NaOL is not the only explanation for the reduction of Pd-precursors since Pd NPs could be synthesized with CTAC and the saturated fatty acid sodium stearate (NaST). A quantitative evaluation of the reduction kinetics using UV-Vis spectroscopy shows that Pd NPs synthesized with both stabilizer combinations follow pseudo first-order reaction kinetics, where NaOL provides a faster and more effective reduction of Pd-precursors. The colloidal stabilization of the NP surface by CTAC and NaOL is confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analysis.

3.
Molecules ; 26(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374301

ABSTRACT

Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.


Subject(s)
Bacteria/chemistry , Biocompatible Materials/chemistry , Cellulose/chemistry , Dentistry , Cellulose/ultrastructure , Dentistry/methods , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/ultrastructure
4.
ACS Nano ; 10(8): 7892-900, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27483165

ABSTRACT

Essentially all of the Ag nanowires reported in the literature have sizes larger than 30 nm in diameter. In this article, we report a simple and robust approach to the synthesis of Ag nanowires with diameters below 20 nm and aspect ratios over 1000 using a one-pot polyol method. The Ag nanowires took a penta-twinned structure, and they could be obtained rapidly (<35 min) and in high morphology purity (>85% of the as-obtained solid product) under atmospheric pressure. The key to the success of this synthesis is to restrain the nanowires from lateral growth by employing both Br(-) ions and poly(vinylpyrrolidone) with a high molecular weight of 1 300 000 g/mol to cap the {100} side faces, together with the use of a syringe pump to slowly introduce AgNO3 into the reaction solution. By optimizing the ratios between the capping agents and AgNO3, we were able to slow down the reduction kinetics and effectively direct the Ag nanowires to grow along the longitudinal direction only. The nanowires showed great mechanical flexibility and could be bent with acute angles without breaking. Because of their small diameters, the transverse localized surface plasmon resonance peak of the Ag nanowires could be pushed down to the ultraviolet region, below 400 nm, making them ideal conductive elements for the fabrication of touch screens, solar cells, and smart windows.

5.
Carbohydr Polym ; 153: 406-420, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27561512

ABSTRACT

Bacterial cellulose (BC) produced by some bacteria, among them Gluconacetobacter xylinum, which secrets an abundant 3D networks fibrils, represents an interesting emerging biocompatible nanomaterial. Since its discovery BC has shown tremendous potential in a wide range of biomedical applications, such as artificial skin, artificial blood vessels and microvessels, wound dressing, among others. BC can be easily manipulated to improve its properties and/or functionalities resulting in several BC based nanocomposites. As example BC/collagen, BC/gelatin, BC/Fibroin, BC/Chitosan, etc. Thus, the aim of this review is to discuss about the applicability in biomedicine by demonstrating a variety of forms of this biopolymer highlighting in detail some qualities of bacterial cellulose. Therefore, various biomedical applications ranging from implants and scaffolds, carriers for drug delivery, wound-dressing materials, etc. that were reported until date will be presented.


Subject(s)
Bacteria/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Cellulose/chemistry , Cellulose/therapeutic use , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/therapeutic use , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/therapeutic use , Bandages , Cellulose/analogs & derivatives , Drug Delivery Systems/methods , Gluconacetobacter xylinus/chemistry , Humans , Polysaccharides, Bacterial/analogs & derivatives , Prostheses and Implants , Tissue Engineering/methods , Tissue Scaffolds/chemistry
6.
ACS Nano ; 9(10): 10523-32, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26372854

ABSTRACT

This article describes a seed-mediated approach to the synthesis of Ag nanorods with thin diameters and tunable aspect ratios. The success of this method is built upon our recent progress in the synthesis of Pd decahedra as uniform samples, together with controllable sizes. When used as a seed, the Pd decahedron could direct the deposition of Ag atoms along the 5-fold axis to generate a nanorod, with its diameter being determined by the lateral dimension of the seed. We were able to generate Ag nanorods with uniform diameters down to 20 nm. Under the conditions we used for growth, symmetry breaking occurred as the Ag atoms were only deposited along one side of the Pd decahedral seed to generate a Ag nanorod with the Pd seed being positioned at one of its two ends. We also systematically investigated the localized surface plasmon resonance (LSPR) properties of the Ag nanorods. With the transverse mode kept below 400 nm, the longitudinal mode could be readily tuned from the visible to the near-infrared region by varying the aspect ratio. As an important demonstration, we obtained Ag nanorods with no LSPR peak in the visible spectrum (400-800 nm), which are attractive for applications related to the fabrication of touchscreen displays, solar films, and energy-saving smart windows.

7.
Environ Sci Pollut Res Int ; 22(2): 870-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24809496

ABSTRACT

In this work, a new step was added to the classic route of iron-pillared clay obtention, resulting in a material with both magnetic and oxidative properties. The saturation of the material surface intercalated with trinuclear acetate-hydroxo iron (III) nitrate in glacial acetic acid atmosphere before heat treatment promoted magnetic phase formation (FePMAG). The material was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS), and X-ray photoelectron spectroscopy (XPS). FePMAG showed an increase of 0.57 nm in basal spacing which contributed to the specific surface area increase from 39.1 to 139.2 m(2)/g. The iron phase identified by XRD and XPS was maghemite, with a little presence of hematite formed by the trinuclear acetate-hydroxo iron (III) nitrate decomposition during heat treatment. In the adsorption tests, FePMAG displayed a good capacity for organic dye methylene blue (MB) removal, reaching 41 % at 150 min. Under photo-Fenton conditions, the material showed an excellent MB oxidation capacity, completely removing the color of the solution within 90 min. Identification of the oxidation products with lower molecular (m/z = 160, 220, and 369) mass was performed by electrospray ionization mass spectroscopy (ESI-MS).


Subject(s)
Aluminum Silicates/chemistry , Ferric Compounds/chemistry , Organic Chemicals/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Clay , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Organic Chemicals/isolation & purification , Oxidation-Reduction , Photochemical Processes , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...