Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 35(9-12): 1556-64, 2014.
Article in English | MEDLINE | ID: mdl-24701956

ABSTRACT

The photo-Fenton process was applied to degrade non-ionic surfactants with different numbers of ethoxy groups, seven (E7), ten (E10) and twenty-three (E23). The effects of H2O2 concentration, Fe(II) concentration and number of ethoxy groups on the mineralization of surfactants were investigated. The response surface methodology (RSM) was applied to determine optimal concentrations of Fenton's reagents for each surfactant. The efficiency of the photo-Fenton process reached 95% for all surfactants studied at 45 min in optimal conditions determined in this work. The analysis of results showed that the efficiency depends upon the number of ethoxy groups in the surfactant. The increase in ethoxy groups favoured the mineralization of surfactants. The analysis of variance (ANOVA) was applied, and according to the F-test the models for the mineralization of surfactants were considered significant and predictable. The photo-Fenton process has proven to be feasible for the degradation of ethoxylated surfactants in aqueous solution.


Subject(s)
Ethyl Ethers/chemistry , Fatty Alcohols/chemistry , Photolysis , Surface-Active Agents/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry
2.
Water Sci Technol ; 69(4): 768-74, 2014.
Article in English | MEDLINE | ID: mdl-24569275

ABSTRACT

An artificial neural network (ANN) was implemented for modeling phenol mineralization in aqueous solution using the photo-Fenton process. The experiments were conducted in a photochemical multi-lamp reactor equipped with twelve fluorescent black light lamps (40 W each) irradiating UV light. A three-layer neural network was optimized in order to model the behavior of the process. The concentrations of ferrous ions and hydrogen peroxide, and the reaction time were introduced as inputs of the network and the efficiency of phenol mineralization was expressed in terms of dissolved organic carbon (DOC) as an output. Both concentrations of Fe(2+) and H2O2 were shown to be significant parameters on the phenol mineralization process. The ANN model provided the best result through the application of six neurons in the hidden layer, resulting in a high determination coefficient. The ANN model was shown to be efficient in the simulation of phenol mineralization through the photo-Fenton process using a multi-lamp reactor.


Subject(s)
Bioreactors , Light , Models, Theoretical , Neural Networks, Computer , Phenol/chemistry
3.
Water Sci Technol ; 68(5): 1031-6, 2013.
Article in English | MEDLINE | ID: mdl-24037153

ABSTRACT

CuO/ZnO coupled oxide films were electrodeposited onto an aluminum substrate and tested as photocatalysts in degradation of phenol molecules in aqueous solution under sunlight. The obtained films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the photocatalytic activity of films was significant, especially to coupled oxide film with a CuO/ZnO ratio equal to 0.697, which presented about 70% degradation of the aromatic molecules and 42% of total organic carbon (TOC) removal at 300 min under solar irradiation. Therefore, this work highlights the potential application of CuO/ZnO coupled oxide films obtained by electrodeposition onto aluminum substrate in the field of photocatalysis.


Subject(s)
Copper/chemistry , Electroplating/methods , Phenols/chemistry , Photochemistry/methods , Sunlight , Zinc Oxide/chemistry , Catalysis
4.
J Hazard Mater ; 199-200: 151-7, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22099942

ABSTRACT

Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min(-1) for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H(2)O(2) concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Water Pollutants, Chemical/analysis , Xylenes/analysis , Air , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...