Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626727

ABSTRACT

AIMS: To isolate and characterize non-rhizobial nodule-associated bacteria (NAB) from cowpea root-nodules regarding their performance of plant-growth-promoting mechanisms and their ability to enhance cowpea growth and symbiosis when co-inoculated with bradyrhizobia. METHODS AND RESULTS: Sixteen NAB were isolated, identified, and in vitro evaluated for plant growth promotion traits. The ability to promote cowpea growth was analyzed when co-inoculated with Bradyrhizobium pachyrhizi BR 3262 in sterile and non-sterile substrates. The 16S rRNA gene sequences analysis revealed that NAB belonged to the genera Chryseobacterium (4), Bacillus (3), Microbacterium (3), Agrobacterium (1), Escherichia (1), Delftia (1), Pelomonas (1), Sphingomonas (1), and Staphylococcus (1). All strains produced different amounts of auxin siderophores and formed biofilms. Twelve out of the 16 strains carried the nifH, a gene associated with nitrogen fixation. Co-inoculation of NAB (ESA 424 and ESA 29) with Bradyrhizobium pachyrhizi BR 3262 significantly promoted cowpea growth, especially after simultaneous inoculation with the three strains. CONCLUSIONS: NAB are efficient cowpea growth promoters and can improve the efficiency of the symbiosis between cowpea and the N2-fixing microsymbiont B. pachyrhizi BR 3262, mainly under a specific triple microbial association.


Subject(s)
Bradyrhizobium , Pilots , Rhizobium , Vigna , Humans , Vigna/genetics , Vigna/microbiology , Symbiosis/genetics , Rhizobium/genetics , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Bradyrhizobium/genetics , Nitrogen Fixation , Phylogeny
2.
Braz J Microbiol ; 53(3): 1623-1632, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35809208

ABSTRACT

Peanut (Arachis hypogaea L.) is an important crop for the family-based systems in the tropics, mainly in Brazil. In the Brazilian drylands, peanuts are cropped in low technological systems, and cheap and efficient technologies are needed to improve crop yield and sustainability. Despite this importance, few data are available on selecting efficient peanut rhizobia in experiments under different edaphoclimatic conditions. This work evaluated the agronomic efficiency and the biological nitrogen fixation (BNF) by two elite Bradyrhizobium strains under four different fields in the Brazilian semiarid region. We compared a new efficient strain Bradyrhizobium sp. ESA 123 with the reference strain B. elkanii SEMIA 6144, currently used in peanut rhizobial inoculants in Brazil. Besides the inoculated treatments, two uninoculated controls were assessed (with and without 80 kg ha-1 of N-urea). The BNF was estimated by the δ15N approach in three out of four field assays. BNF contribution was improved by inoculation of both Bradyrhizobium strains, ranging from 42 to 51% in Petrolina and 43 to 60% in Nossa Senhora da Glória. Peanuts' yields benefited from the inoculation of both strains and N fertilization in all four assays. Nevertheless, the results showed the efficiency of both strains under different edaphoclimatic conditions, indicating the native strain ESA 123 as a potential bacterium for recommendation as inoculants for peanuts in Brazil, mainly in drylands.


Subject(s)
Bradyrhizobium , Fabaceae , Arachis/microbiology , Bradyrhizobium/genetics , Brazil , Nitrogen Fixation , Symbiosis
3.
3 Biotech ; 11(1): 4, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33269188

ABSTRACT

The co-inoculation of Bradyrhizobium with other non-bradyrhizobial strains was already assessed on cowpea, but the co-inoculation of two Bradyrhizobium strains was not tested up to now. This study aimed to evaluate the cowpea growth, N accumulation, and Bradyrhizobium competitiveness of the elite strain B. pachyrhizi BR 3262 when co-inoculated with other efficient Bradyrhizobium from the Brazilian semiarid region. Three potted-plant experiments were carried out. In the first assay, 35 efficient Bradyrhizobium isolates obtained from the semiarid region of Brazil were co-inoculated with the elite strains B. pachyrhizi BR 3262. The experiment was conducted in gnotobiotic conditions. The plant growth, nodulation, N nutritional variables, and nodular occupation were assessed. Under gnotobiotic and non-sterile soil conditions, ten selected bacteria plus the elite strain B. yuanmingense BR 3267 were used at the second and third experiments, respectively. The cowpea was inoculated with the 11 bacteria individually or co-inoculated with BR 3262. The plant growth and N nutritional variables were assessed. A double-layer medium spot method experiment was conducted to evaluate the interaction among the co-inoculated strains in standard and diluted YMA media. The co-inoculation treatments showed the best efficiency when compared to the treatments inoculated solely with BR 3262. This strain occupied a low amount of cowpea nodules ranging from 5 to 67.5%. The treatments with lower BR 3262 nodule occupancy showed the best results for the shoot nitrogen accumulation. The culture experiment showed that four bacteria inhibited the growth of BR 3262. In contrast, seven strains from the soils of Brazilian semiarid region were benefited by the previous inoculation of this strain. In the second and third experiments, the results indicated that all 11 co-inoculated treatments were more efficient than the single inoculation, proofing the best performance of the dual inoculation of Bradyrhizobium on cowpea.

4.
World J Microbiol Biotechnol ; 34(12): 186, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30506306

ABSTRACT

Sorghum [Sorghum bicolor (L.) Moench] is a multipurpose grass cultivated in drylands due to its adaptation to drought. However the characteristics of sorghum-associated bacteria are not known in the Brazilian drylands. The aim of this study was to isolate and evaluate the plant growth promotion potential bacteria from field-grown sorghum under two irrigation and manure application levels in a Brazilian semi-arid reagion. Sorghum was irrigated with 3 or 1 mm day-1 and fertilized or not with liquid goat manure. Bacteria were obtained from surface-disinfected roots applying two nitrogen-free semi-solid media. The bacteria were evaluated for the presence of nifH gene, 16S rRNA sequences, calcium-phosphate solubilization, production of auxins and siderophores and for sorghum growth promotion. We obtained 20 out of 24 positive bacteria for nifH. The isolates were classified as in six different genera. All isolates produced auxins "in vitro", six bacteria produced siderophores and three Enterobacteriaceae solubilized calcium-phosphate. At least ten bacteria resulted in the increased total N content in the sorghum shoots, comparable to fertilization with 50 mg N plant-1 week-1 and to inoculation with Azospirillum brasilense Ab-V5. Enterobacter sp. ESA 57 was the best sorghum plant-growth promoting bacteria isolated in this study.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Plant Development , Plant Roots/microbiology , Sorghum/growth & development , Sorghum/microbiology , Azospirillum brasilense/classification , Azospirillum brasilense/genetics , Azospirillum brasilense/isolation & purification , Azospirillum brasilense/metabolism , Bacteria/genetics , Bacterial Physiological Phenomena , Brazil , Calcium/metabolism , Enterobacter/classification , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacter/metabolism , Indoleacetic Acids/metabolism , Nitrogen/metabolism , Nitrogen Fixation , Oxidoreductases/genetics , Phosphates/metabolism , Phylogeny , Plant Growth Regulators/metabolism , Plant Shoots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Siderophores/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...