Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7302, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147458

ABSTRACT

The study objective was to evaluate the effects of the addition of exogenous protease on the fermentation and nutritive value of rehydrated corn and sorghum grain silages during various storage periods. Treatments were applied using a 2 × 6 × 3 factorial combination, with 2 types of rehydrated grains (corn and sorghum), 6 doses of the enzyme (0, 0.3, 0.6, 0.9, 1.2, and 1.5%, based on natural matter) and 3 fermentation periods (0, 60, and 90 days) in a completely randomized design, with 4 replications. The protease aspergilopepsin I, of fungal origin, produced by Aspergillus niger, was used. The lactic acid concentration increased linearly as the enzyme dose increased in corn (CG) and sorghum (SG) grain silages, at 60 and 90 days of fermentation. There was an increase in the concentrations of ammonia nitrogen and soluble protein, as well as the in situ starch digestibility in rehydrated CG and SG silages, compared to the treatment without the addition of protease. The addition of 0.3% exogenous protease at the moment of CG ensiling and 0.5% in rehydrated SG increased the proteolytic activity during fermentation, providing an increase in in situ starch digestibility in a shorter storage time.


Subject(s)
Silage , Sorghum , Silage/microbiology , Peptide Hydrolases/metabolism , Zea mays/metabolism , Sorghum/metabolism , Fermentation , Nutritive Value , Starch/metabolism
2.
Sci Rep ; 12(1): 16864, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207495

ABSTRACT

Due to the co-evolved intricate relationships and mutual influence between changes in the microbiome and silage fermentation quality, we explored the effects of Lactobacillus plantarum and Propionibacterium acidipropionici (Inoc1) or Lactobacillus buchneri (Inoc2) inoculants on the diversity and bacterial and fungal community succession of rehydrated corn (CG) and sorghum (SG) grains and their silages using Illumina Miseq sequencing after 0, 3, 7, 21, 90, and 360 days of fermentation. The effects of inoculants on bacterial and fungal succession differed among the grains. Lactobacillus and Weissella species were the main bacteria involved in the fermentation of rehydrated corn and sorghum grain silage. Aspergillus spp. mold was predominant in rehydrated CG fermentation, while the yeast Wickerhamomyces anomalus was the major fungus in rehydrated SG silages. The Inoc1 was more efficient than CTRL and Inoc2 in promoting the sharp growth of Lactobacillus spp. and maintaining the stability of the bacterial community during long periods of storage in both grain silages. However, the bacterial and fungal communities of rehydrated corn and sorghum grain silages did not remain stable after 360 days of storage.


Subject(s)
Agricultural Inoculants , Microbiota , Sorghum , Edible Grain , Fermentation , Silage/microbiology , Sorghum/microbiology , Zea mays/microbiology
3.
Mol Biol Rep ; 46(1): 451-460, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30443821

ABSTRACT

This study was conducted to evaluate the fermentative profile and microbial populations of wilted and non-wilted alfalfa silages ensiled with or without inoculant and the population dynamics of lactic acid bacteria (LAB) of wilted alfalfa plant and theirs silage. A 2 × 2 × 6 factorial arrangement was used, with the absence or presence of wilting (W), with and without bacterial inoculant (I) and six fermentation periods (P) (1, 3, 7, 14, 28 and 56 days), in a completely randomized design, with three replicates. The alfalfa was slightly wilted for 6 h and increased the dry matter content from 133.9 to 233.4 g/kg. It was performed the cultivation, followed by the isolation of LAB from samples of alfalfa forage before ensiling and its silage only in non-inoculated silages, after different fermentation periods. DNA was extracted from the isolated strains of LAB; the 16S rRNA gene sequences were amplified by PCR and the sequences were compared to those available from the GenBank database. Wilting provided silages with lower pH, ammonia nitrogen and acetic acid concentrations. The wilting process did not alter the amount of LAB; however, it affected the LAB diversity of the silages. The Lactobacillus plantarum was the predominant species in non-wilted and wilted silages.


Subject(s)
Lactobacillales/genetics , Medicago sativa/genetics , Medicago sativa/microbiology , Acetic Acid , Ammonia , Fermentation , Genetics, Population/methods , Hydrogen-Ion Concentration , Lactic Acid , Lactobacillus/genetics , Lactobacillus plantarum/genetics , Nitrogen , Silage/microbiology , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...