Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; : 1-5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767203

ABSTRACT

Aqueous and hydroalcoholic extracts from the pulp of Ambelania acida Aubl. (Apocynaceae) fruits were subjected to analysis through UHPLC-HRMS and antioxidant potential using the TPC, DPPH, ABTS, FRAP, and ORAC assays. A putative identification of the compounds carried out by comparison of the fragmentation spectra revealed the predominance of the monoterpene indole alkaloids tabersonine, pseudocopsinine, ajmalicine, and strictosidine. Additionally, gallic acid, caffeic acid, citric acid, 3-O-p-coumaroylquinic acid, chlorogenic acid, catechin, ellagic acid, eschweilenol C (ellagic acid deoxyhexoside), and sucrose were identified. In face of the phenolic compounds observed, hydroalcoholic extract showed a higher antioxidant activity compared to the aqueous extract, observed at TPC (108.85 mg GAE/100g), FRAP (0.73 µmol Fe2SO4/g), DPPH (1221.76 µmol TE/g), ABTS (3460.00 µmol TE/g), and ORAC assays (120.47 µmol TE/g). These findings underscore the abundant presence of bioactive compounds, including phenolics and alkaloids, in an edible Amazonian fruit.

2.
Nat Prod Res ; 35(22): 4729-4733, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31983230

ABSTRACT

The search for bioactive compounds against diseases is imperative and the richness of the Amazon provides a large source to be explored. Current therapies for the treatment of parasitic infections have severe side effects and low efficacy, which makes the development of an effective chemotherapy extremely important. In this study, we describe the isolation of styrylpyrone 4-methoxy-6-(11,12-methylenedioxy-trans-styryl)-2-pyrone (SP), from the Amazonian tree species, Aniba panurensis, the in vitro activity against Leishmania amazonensis promastigotes, and its in silico pharmacokinetics properties. The results showed morphological and ultrastructural alterations, cell cycle impairment, increased reactive oxygen species production, accumulation of lipid bodies and formation of autophagic vacuoles in SP-treated parasites. In silico studies revealed that the compound has a high drug-score, which is encouraging for further investigation. Our results indicate that SP is a promising drug candidate, which induces alterations in L. amazonensis leading to parasite death through cell cycle arrest and autophagy.


Subject(s)
Antiprotozoal Agents , Lauraceae , Leishmania mexicana , Animals , Antiprotozoal Agents/pharmacology , Autophagy , Cell Cycle Checkpoints , Mice , Mice, Inbred BALB C , Reactive Oxygen Species
3.
Nat Prod Res ; 35(5): 849-852, 2021 Mar.
Article in English | MEDLINE | ID: mdl-30990331

ABSTRACT

Extracts and six isolated substances from Aniba (Lauraceae) Amazonian species A. parviflora, A. panurensis and A. rosaeodora were analysed in vitro to their antibacterial, antiparasitic and antiplasmodial activities. NMR and MS experiments led to the identification of three styrylpyrones (5,6-dihydrokawain [I], 4-methoxy-11,12-methylenedioxy-6-trans-styryl-pyran-2-one [II] and rel-(6R,7S,8S,5'S)-4'-methoxy-8-(11,12-dimethoxyphenyl-7-[6-(4-methoxy-2-pyranyl)]-6-(E)-styryl-1'-oxabicyclo[4,2,0]oct-4'-en-2'-one [III]), a pyridine alkaloid (anibine [IV]) and two kavalactones (tetrahydroyangonin [V] and dihydromethysticin [VI]). The best antibacterial result was observed at the hexane fraction of A. panurensis (MIC 7.8 µg/mL against the three bacteria). Equal MIC were observed by the extract and dichloromethane fraction of A. panurensis against S. simulans and S. aureus; and 15.62 µg/mL against MRSA. Similarly, only A. panurensis extracts showed in vitro activities against Tripanossoma cruzi and Leishmania amazonensis parasites. In Plasmodium falciparum assay, 5,6-dihydrokawain was considered an active antimalarial (14.03 µM), and substances II (132.94 µM) and III (41.84 µM) presented moderate activities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lauraceae/chemistry , Antimalarials/chemistry , Antimalarials/pharmacology , Bacteria/drug effects , Microbial Sensitivity Tests , Phytochemicals/analysis , Phytochemicals/chemistry , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Pyrones/pharmacology , Trypanosoma cruzi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...