Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pestic Biochem Physiol ; 181: 105027, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35082043

ABSTRACT

The aim of this work was to test the insecticidal effect of the essential oil of Illicium verum (Hook) by observing the survival, biochemical parameters (acetylcholinesterase (AChE) activity, glutathione s-transferase (GST) activity and the concentration of reactive oxygen species (ROS)) and locomotor capacity of the Coleoptera Alphitobius diaperinus (Panzer), a pest of beef poultry. The sublethal concentrations (100% survival of A. diaperinus during 96 h of exposure) of I. verum essential oil selected for analysis were 0.5% and 1%. The selected sublethal concentrations did not show significant increases in ROS levels after 24 h of exposure to the essential oil. However, increases in GST activity were seen following exposure to 0.5% I. verum essential oil, while decreases in AChE activity were observed following exposure to concentrations of 0.5% and 1%. These results correlate with the observed behavior of A. diaperinus; when placed into an arena, these insects typically demonstrate aversion to stimuli and refuge-seeking behavior. Following exposure to 0.5% I. verum essential oil, the insects showed loss of refuge-seeking capacity and, following exposure to a concentration of 1%, loss of locomotor capacity. Overall, these results indicate that I. verum essential oil can be used as an alternative to conventional insecticides.


Subject(s)
Coleoptera , Illicium , Insecticides , Oils, Volatile , Acetylcholinesterase , Animals , Cattle , Cholinesterases , Insecticides/pharmacology , Locomotion , Oils, Volatile/pharmacology
2.
Aquat Toxicol ; 225: 105527, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32599436

ABSTRACT

A diverse range of chemicals are used in agriculture to increase food production on a large scale, and among them is the use of pesticides such as chlorothalonil, a broad-spectrum fungicide used in the control of foliar fungal diseases. This study aimed to elucidate the effects of chlorothalonil on biochemical biomarkers of oxidative stress in tissues of the fish Danio rerio. To achieve this, animals were exposed for 4 and 7 days, to nominal concentrations of chlorothalonil at 0 µg/L (DMSO, 0.001%), 0.1 µg/L and 10 µg/L, and after the exposure period, the tissues (gills and liver) were removed for biochemical analysis. Antioxidant capacity against peroxyl radicals (ACAP) and enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutamate cysteine ligase (GCL), were evaluated in both tissues. In addition, the concentration of reactive oxygen species (ROS), reduced glutathione (GSH) and lipid peroxidation (LPO) levels were also analysed. A significant increase in ROS concentration, ACAP levels, GST and GCL activities and a significant reduction of LPO levels in gills exposed to the highest concentration were observed after 4 days. However, there was a significant reduction of ACAP and CAT activity, as well as a significant increase of GST activity and LPO levels in gills exposed to the lower concentration after 7 days. The liver was less affected, presenting a significant reduction in CAT activity and LPO levels after 4 days. However, a significant increase in SOD activity and LPO levels occurred after 7 days. These results indicate that chlorothalonil, after 4 days, caused activation of the antioxidant defence system in gills of animals exposed to the highest concentration. However, after 7 days, the lowest concentration of this compound caused oxidative stress in this same organ. Also, the results show that gills were more affected than the liver, probably because gills can be involved in chlorothalonil metabolisation. Therefore, it is possible that the liver could be exposed to lower chlorothalonil concentrations or less toxic metabolites due to the metabolism taking place in the gills.


Subject(s)
Antioxidants/metabolism , Fungicides, Industrial/toxicity , Nitriles/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Catalase/metabolism , Gills/drug effects , Gills/enzymology , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Peroxides/metabolism , Superoxide Dismutase/metabolism
3.
Aquat Toxicol ; 196: 1-8, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29310040

ABSTRACT

Chlorothalonil is an active biocide applied in antifouling paints, and also used as fungicide in agricultural activities with the purpose to protect plants from foliar and seed diseases. Thus, the aim of this study was to evaluate the effects of chlorothalonil exposure on biochemical biomarkers of oxidative metabolism as well as on cholinesterases in the estuarine polychaete Laeonereis acuta. Animals were exposed for 24 and 96 h to the following nominal concentrations of chlorothalonil: 0.1, 10.0 and 100.0 µg/L. The antioxidant capacity against peroxyl radicals (ACAP) and the activity of the enzymes catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), glutamate cysteine ligase (GCL), acetylcholinesterase (AChE) and propionylcholinesterase (PChE) were evaluated in whole-body tissue. In addition, the levels of reduced glutathione (GSH), lipid peroxidation (LPO), glycogen and lactate levels were also analyzed. A reduction in ACAP levels was observed in animals exposed to the higher chlorothalonil concentration, concomitantly with an induction of GST activity as well as diminution in GSH content in these animals. This disturbance in the redox state of animal tissues leads to an oxidative stress situation, resulting in an induction in LPO levels. It was also demonstrated that chlorothalonil exposure causes alteration in AChE activity, possibly related to damage to membrane lipids. These results demonstrated that chlorothalonil possesses harmful effects to estuarine animals and its use as antifouling biocide has to be carefully reconsidered in risk analysis studies.


Subject(s)
Fungicides, Industrial/toxicity , Nitriles/toxicity , Oxidative Stress/drug effects , Polychaeta/drug effects , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Catalase/metabolism , Cholinesterases/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Glycogen/analysis , Lactic Acid/analysis , Lipid Peroxidation/drug effects , Peroxides/metabolism , Polychaeta/metabolism , Spectrophotometry , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...