Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38892560

ABSTRACT

Blood selenium (Se) concentrations differ substantially by population and could be influenced by genetic variants, increasing Se deficiency-related diseases. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with serum Se deficiency in 382 adults with admixed ancestry. Genotyping arrays were combined to yield 90,937 SNPs. R packages were applied to quality control and imputation. We also performed the ancestral proportion analysis. The Search Tool for the Retrieval of Interacting Genes was used to interrogate known protein-protein interaction networks (PPIs). Our ancestral proportion analysis estimated 71% of the genome was from Caucasians, 22% was from Africans, and 8% was from East Asians. We identified the SNP rs1561573 in the TraB domain containing 2B (TRABD2B), rs425664 in MAF bZIP transcription factor (MAF), rs10444656 in spermatogenesis-associated 13 (SPATA13), and rs6592284 in heat shock protein nuclear import factor (HIKESHI) genes. The PPI analysis showed functional associations of Se deficiency, thyroid hormone metabolism, NRF2-ARE and the Wnt pathway, and heat stress. Our findings show evidence of a genetic association between Se deficiency and metabolic pathways indirectly linked to Se regulation, reinforcing the complex relationship between Se intake and the endogenous factors affecting the Se requirements for optimal health.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Selenium , Humans , Selenium/blood , Selenium/deficiency , Male , Female , Adult , Brazil , Middle Aged , Genetic Predisposition to Disease , White People/genetics , Genotype , Protein Interaction Maps/genetics
2.
BMC Res Notes ; 17(1): 67, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444014

ABSTRACT

OBJECTIVES: Male infertility accounts for approximately 30% of cases of reproductive failure. The characterization of genetic variants using cytogenomic techniques is essential for the adequate clinical management of these patients. We aimed to conduct a cytogenetic investigation of numerical and structural rearrangements and a genomic study of Y chromosome microdeletions/microduplications in infertile men derived from a single centre with over 14 years of experience. RESULTS: We evaluated 151 infertile men in a transversal study using peripheral blood karyotypes and 15 patients with normal karyotypes through genomic investigation by multiplex ligation-dependent probe amplification (MLPA) or polymerase chain reaction of sequence-tagged sites (PCR-STS) techniques. Out of the 151 patients evaluated by karyotype, 13 presented chromosomal abnormalities: two had numerical alterations, and 11 had structural chromosomal rearrangements. PCR-STS detected a BPY2 gene region and RBMY2DP pseudogene region microdeletion in one patient. MLPA analysis allowed the identification of one patient with CDY2B_1 and CDY2B_2 probe duplications (CDY2B and NLGN4Y genes) and one patient with BPY2_1, BPY2_2, and BPY2_4 probe duplications (PRY and RBMY1J genes).


Subject(s)
Genomics , Infertility, Male , Humans , Male , Brazil , Infertility, Male/genetics , Genetic Services , Karyotyping , Multiplex Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...