Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1251: 340709, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-36925273

ABSTRACT

A procedure of direct magnetic sorbent sampling in flame atomic absorption spectrometry (DMSS-FAAS) was developed in this work. Metal-loaded magnetic sorbents were directly inserted in the flame of the FAAS for direct metal desorption/atomization. Magnetic graphene oxide aerogel (M-GOA) particles were synthesized, characterized, and used as a proof-of-concept in the magnetic dispersive solid phase extraction of Pb2+ ions from water samples. M-GOA was selected because is a light and porous sorbent, with high adsorption capacity, that is quickly burned by the flame. Magnetic particles were directly inserted in the flame by using a metallic magnetic probe, thereby avoiding the need for a chemical elution step. As all the extracted Pb2+ ions arrive to the flame without passing through the nebulization system, a drastic increase in the analytical signal was achieved. The improvement in the sensitivity of the proposed method (DMSS-FAAS) for Pb2+ determination was at least 40 times higher than the conventional procedure in which the Pb2+ is extracted, eluted, and analyzed by conventional flame atomic absorption spectrometry (FAAS) via the nebulization system. The analytical curve was linear from 5.0 to 180.0 µg L-1 and the limit of detection was found to be 1.30 µg L-1. Background measurements were insignificant, and the atomic absorption peaks were narrow and reproducible. Precision assessed as a percentage of the relative standard deviation %RSD was found to be 17.4, 7.1, and 7.8% for 10, 70, and 180 µg L-1 levels, respectively. The method showed satisfactory results even in the presence of other ions (Al3+, Cr3+, Co2+, Cu2+, Fe3+, Mn2+, Ba2+, Mg2+, and Li+). The performance of the new system was also evaluated for Cd2+ ions, as well as by using other magnetic particles available in our lab: magnetic carbon nanotubes (M-CNTs), magnetic restricted access carbon nanotubes (M-RACNT), magnetic poly (methacrylic acid-co-ethylene glycol dimethacrylate) (M-PMA), magnetic nanoparticles coated with orange powder peel (M-OPP), and magnetic nanoparticles covered with SiO2 (M - SiO2). Analytical signals increased for both analytes in all sorbents (increases of about 4-37 times), attesting the high potential and applicability of the proposed method. Simplicity, high analytical frequency, high detectability and reproducibility, low cost, and possibility of being totally mechanized are the most relevant advantages.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 241: 118632, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32650243

ABSTRACT

In this work, magnetic restricted-access carbon nanotubes (M-RACNTs) were synthesized, characterized and used in the dispersive solid-phase extraction (d-SPE) of organophosphate pesticides (OPPs) from food samples (broccoli, eggplant, cauliflower, and soy milk), followed by spectrophotometric determination in a flow injection analysis system. Fe3O4 nanoparticles were incorporated in the multi-walled carbon nanotubes employing dimethylformamide. The dimethylformamide was used as a solvent in the incorporation process, forming the suspension of both particles. The resulting M-CNTs were covered with an external bovine serum albumin (BSA) layer, chemically crosslinked. M-RACNTs were able to efficiently capture OPPs, excluding about 95% of the proteins from food matrices. The analyses were carried out in a flow injection analysis system (FIA), with the spectrophotometric detection (at 560 nm) of the complex formed by the reaction between OPPs, N-bromosuccinimide and rhodamine B. A fractional factorial design method was used to optimize the experimental parameters. The addition/recovery test showed results from 95.5% to 108.9%. Accuracies were checked by comparing the results obtained with the proposed and standard HPLC methods, which were in agreement. The proposed method was linear from 5 to 90 µg L-1 of OPPs, with limits of detection and quantification of 0.74 and 5 µg L-1 and precision of 3.67%, expressed as relative standard deviation. The pre-concentration factor was about 164 times.


Subject(s)
Nanotubes, Carbon , Chromatography, High Pressure Liquid , Limit of Detection , Magnetic Phenomena , Organophosphates , Solid Phase Extraction
3.
Anal Chim Acta ; 1102: 11-23, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32043990

ABSTRACT

Magnetic restricted-access carbon nanotubes (M-RACNTs) were synthesised and used for dispersive solid phase extraction of organophosphates (chlorpyriphos, malathion, disulfoton, pirimiphos) from commercial bovine raw milk samples. Due to their magnetic susceptibility, M-RACNTs were easily separated from the samples/solvents using a neodymium magnet, and the extracted organophosphates were analysed by gas chromatography-mass spectrometry. The protein exclusion capacity was about 100%. Kinetic and isotherm data (for M-RACNTs - malathion interaction) were adequately adjusted to the pseudo-second order and Sips models, respectively, and the maximum adsorption capacity was about 0.55 mg g-1. The method presented linear ranges from 5.0 to 40.0 µg L-1 for all analytes, with determination coefficients from 0.9902 to 0.9963. The intra-assay precisions (as relative standard deviation) and accuracies (as relative error) ranged from 10.47 to 19.85% and from -0.18 to -18.80%, respectively, whereas the inter-assay precisions ranged from 6.48 to 18.76% and from -0.22 to 19.49%, respectively for 5.0, 20.0 and 40.0 µg L-1 organophosphates levels. The organophosphates were not stable at 4 and 24 h (relative errors ranged from -39.30 to 72.07% and -69.64 to 75.95%, respectively). Limits of detection ranged from 0.36 to 0.95 µg L-1, and 5 µg L-1 was defined as the limit of quantification for all the analytes. The proposed method was applied in the determination of organophosphates in five commercial milk samples, and no pesticides were detected.


Subject(s)
Food Contamination/analysis , Milk/chemistry , Nanotubes, Carbon/chemistry , Organophosphates/analysis , Pesticides/analysis , Adsorption , Animals , Gas Chromatography-Mass Spectrometry , Limit of Detection , Magnetic Phenomena , Organophosphates/chemistry , Organophosphates/isolation & purification , Pesticides/chemistry , Pesticides/isolation & purification , Reproducibility of Results , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...