Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37420788

ABSTRACT

This article describes an empirical exploration on the effect of information loss affecting compressed representations of dynamic point clouds on the subjective quality of the reconstructed point clouds. The study involved compressing a set of test dynamic point clouds using the MPEG V-PCC (Video-based Point Cloud Compression) codec at 5 different levels of compression and applying simulated packet losses with three packet loss rates (0.5%, 1% and 2%) to the V-PCC sub-bitstreams prior to decoding and reconstructing the dynamic point clouds. The recovered dynamic point clouds qualities were then assessed by human observers in experiments conducted at two research laboratories in Croatia and Portugal, to collect MOS (Mean Opinion Score) values. These scores were subject to a set of statistical analyses to measure the degree of correlation of the data from the two laboratories, as well as the degree of correlation between the MOS values and a selection of objective quality measures, while taking into account compression level and packet loss rates. The subjective quality measures considered, all of the full-reference type, included point cloud specific measures, as well as others adapted from image and video quality measures. In the case of image-based quality measures, FSIM (Feature Similarity index), MSE (Mean Squared Error), and SSIM (Structural Similarity index) yielded the highest correlation with subjective scores in both laboratories, while PCQM (Point Cloud Quality Metric) showed the highest correlation among all point cloud-specific objective measures. The study showed that even 0.5% packet loss rates reduce the decoded point clouds subjective quality by more than 1 to 1.5 MOS scale units, pointing out the need to adequately protect the bitstreams against losses. The results also showed that the degradations in V-PCC occupancy and geometry sub-bitstreams have significantly higher (negative) impact on decoded point cloud subjective quality than degradations of the attribute sub-bitstream.


Subject(s)
Data Compression , Humans , Data Compression/methods , Croatia , Portugal
3.
J Digit Imaging ; 36(4): 1826-1850, 2023 08.
Article in English | MEDLINE | ID: mdl-37038039

ABSTRACT

The growing use of multimodal high-resolution volumetric data in pre-clinical studies leads to challenges related to the management and handling of the large amount of these datasets. Contrarily to the clinical context, currently there are no standard guidelines to regulate the use of image compression in pre-clinical contexts as a potential alleviation of this problem. In this work, the authors study the application of lossy image coding to compress high-resolution volumetric biomedical data. The impact of compression on the metrics and interpretation of volumetric data was quantified for a correlated multimodal imaging study to characterize murine tumor vasculature, using volumetric high-resolution episcopic microscopy (HREM), micro-computed tomography (µCT), and micro-magnetic resonance imaging (µMRI). The effects of compression were assessed by measuring task-specific performances of several biomedical experts who interpreted and labeled multiple data volumes compressed at different degrees. We defined trade-offs between data volume reduction and preservation of visual information, which ensured the preservation of relevant vasculature morphology at maximum compression efficiency across scales. Using the Jaccard Index (JI) and the average Hausdorff Distance (HD) after vasculature segmentation, we could demonstrate that, in this study, compression that yields to a 256-fold reduction of the data size allowed to keep the error induced by compression below the inter-observer variability, with minimal impact on the assessment of the tumor vasculature across scales.


Subject(s)
Data Compression , Neoplasms , Humans , Animals , Mice , Data Compression/methods , X-Ray Microtomography , Magnetic Resonance Imaging , Multimodal Imaging , Image Processing, Computer-Assisted/methods
4.
Comput Biol Med ; 150: 106174, 2022 11.
Article in English | MEDLINE | ID: mdl-36252364

ABSTRACT

This article presents a novel end-to-end automatic solution for semantic segmentation of optical coherence tomography (OCT) images. OCT is a non-invasive imaging technology widely used in clinical practice due to its ability to acquire high-resolution cross-sectional images of the ocular fundus. Due to the large variability of the retinal structures, OCT segmentation is usually carried out manually and requires expert knowledge. This study introduces a novel fully convolutional network (FCN) architecture designated by LOCTSeg, for end-to-end automatic segmentation of diagnostic markers in OCT b-scans. LOCTSeg is a lightweight deep FCN optimized for balancing performance and efficiency. Unlike state-of-the-art FCNs used in image segmentation, LOCTSeg achieves competitive inference speed without sacrificing segmentation accuracy. The proposed LOCTSeg is evaluated on two publicly available benchmarking datasets: (1) annotated retinal OCT image database (AROI) comprising 1136 images, and (2) healthy controls and multiple sclerosis lesions (HCMS) consisting of 1715 images. Moreover, we evaluated the proposed LOCTSeg with a private dataset of 250 OCT b-scans acquired from epiretinal membrane (ERM) and healthy patients. Results of the evaluation demonstrate empirically the effectiveness of the proposed algorithm, which improves the state-of-the-art Dice score from 69% to 73% and from 91% to 92% on AROI and HCMS datasets, respectively. Furthermore, LOCTSeg outperforms comparable lightweight FCNs' Dice score by margins between 4% and 15% on ERM segmentation.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Fundus Oculi , Algorithms
5.
Sensors (Basel) ; 22(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35957323

ABSTRACT

Increasing demand for more reliable and safe autonomous driving means that data involved in the various aspects of perception, such as object detection, will become more granular as the number and resolution of sensors progress. Using these data for on-the-fly object detection causes problems related to the computational complexity of onboard processing in autonomous vehicles, leading to a desire to offload computation to roadside infrastructure using vehicle-to-infrastructure communication links. The need to transmit sensor data also arises in the context of vehicle fleets exchanging sensor data, over vehicle-to-vehicle communication links. Some types of sensor data modalities, such as Light Detection and Ranging (LiDAR) point clouds, are so voluminous that their transmission is impractical without data compression. With most emerging autonomous driving implementations being anchored on point cloud data, we propose to evaluate the impact of point cloud compression on object detection. To that end, two different object detection architectures are evaluated using point clouds from the KITTI object dataset: raw point clouds and point clouds compressed with a state-of-the-art encoder and three different compression levels. The analysis is extended to the impact of compression on depth maps generated from images projected from the point clouds, with two conversion methods tested. Results show that low-to-medium levels of compression do not have a major impact on object detection performance, especially for larger objects. Results also show that the impact of point cloud compression is lower when detecting objects using depth maps, placing this particular method of point cloud data representation on a competitive footing compared to raw point cloud data.


Subject(s)
Automobile Driving , Data Compression
6.
Sensors (Basel) ; 18(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158442

ABSTRACT

This work addresses the energy-based source localization problem in wireless sensors networks. Instead of circumventing the maximum likelihood (ML) problem by applying convex relaxations and approximations, we approach it directly by the use of metaheuristics. To the best of our knowledge, this is the first time that metaheuristics are applied to this type of problem. More specifically, an elephant herding optimization (EHO) algorithm is applied. Through extensive simulations, the key parameters of the EHO algorithm are optimized such that they match the energy decay model between two sensor nodes. A detailed analysis of the computational complexity is presented, as well as a performance comparison between the proposed algorithm and existing non-metaheuristic ones. Simulation results show that the new approach significantly outperforms existing solutions in noisy environments, encouraging further improvement and testing of metaheuristic methods.

7.
IEEE Trans Med Imaging ; 36(11): 2250-2260, 2017 11.
Article in English | MEDLINE | ID: mdl-28613165

ABSTRACT

This paper describes a highly efficient method for lossless compression of volumetric sets of medical images, such as CTs or MRIs. The proposed method, referred to as 3-D-MRP, is based on the principle of minimum rate predictors (MRPs), which is one of the state-of-the-art lossless compression technologies presented in the data compression literature. The main features of the proposed method include the use of 3-D predictors, 3-D-block octree partitioning and classification, volume-based optimization, and support for 16-b-depth images. Experimental results demonstrate the efficiency of the 3-D-MRP algorithm for the compression of volumetric sets of medical images, achieving gains above 15% and 12% for 8- and 16-bit-depth contents, respectively, when compared with JPEG-LS, JPEG2000, CALIC, and HEVC, as well as other proposals based on the MRP algorithm.


Subject(s)
Algorithms , Data Compression/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...