Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317110

ABSTRACT

Information is scarce on the interaction of mineral deficiency and salinity. We evaluated two salt-tolerant spinach cultivars under potassium (K) doses (0.07, 0.15, 0.3, and 3.0 mmolc L-1) and saline irrigation (5, 30, 60, 120, and 160 mmolc L-1 NaCl) during germination and growth. There was no interaction between salinity and K. Salinity decreased germination percent (GP), not always significantly, and drastically reduced seedling biomass. 'Raccoon' significantly increased GP at 60 mmolc L-1 while 'Gazelle' maintained GP up to 60 or 120 mmolc L-1. After 50 days under saline irrigation, shoot biomass increased significantly at 30 and 60 mmolc L-1 at the lowest K dose but, in general, neither salinity nor K dose affected shoot biomass, suggesting that salinity supported plant growth at the most K-deficient dose. Salinity did not affect shoot N, P, or K but significantly reduced Ca, Mg, and S, although plants had no symptoms of salt toxicity or mineral deficiency. Although spinach seedlings are more sensitive to salt stress, plants adjusted to salinity with time. Potassium requirement for spinach growth was less than the current crop recommendation, allowing its cultivation with waters of moderate to high salinity without considerable reduction in yield, appearance, or mineral composition.

2.
Plants (Basel) ; 9(4)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326458

ABSTRACT

Two spinach (Spinacea oleracea L.) cultivars were evaluated for their response to deficient (0.25 mmolc L-1 or 0.25 K) and sufficient (5.0 mmolc L-1 or 5.0 K) potassium (K) levels combined with salinities of 5, 30, 60, 90, and 120 mmolc L-1 NaCl. Plants substituted K for Na proportionally with salinity within each K dose. Plants favored K+ over Na+, regardless of salinity, accumulating significantly less Na at 5.0 K than at 0.25 K. Salinity had no effect on N, P, and K shoot accumulation, suggesting that spinach plants can maintain NPK homeostasis even at low soil K. Ca and Mg decreased with salinity, but plants showed no deficiency. There was no Na+ to K+ or Cl- to NO3- competition, and shoot biomass decrease was attributed to excessive NaCl accumulation. Overall, 'Raccoon' and 'Gazelle' biomasses were similar regardless of K dose but 'Raccoon' outproduced 'Gazelle' at 5.0 K at the two highest salinity levels, indicating that 'Raccoon' may outperform 'Gazelle' at higher NaCl concentrations. At low K, Na may be required by 'Raccoon', but not 'Gazelle'. This study suggested that spinach can be cultivated with recycled waters of moderate salinity, and less potassium than recommended, leading to savings on crop input and decreasing crop environmental footprint.

SELECTION OF CITATIONS
SEARCH DETAIL
...