Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Med Sci ; 65(2): 324-331, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32563181

ABSTRACT

PURPOSE: This work investigates how Yb3+ concentration affects the luminescent properties of LaNbO4 nanoparticles for medical imaging applications. Due to the highly transparent optical window for organic tissues in the near infrared region (650-1000 nm), upconversion fluorescence allows near infrared wavelengths to penetrate deeply into tissues, which is useful in biomedical areas such as biodetection, activated phototherapy, and screening. MATERIALS/METHOD: Upconversion nanoparticles based on LaNbO4 doped with Tm3+ and Yb3+ were prepared by the one-step industrial process called Spray Pyrolysis. Samples with different Tm3+:Yb3+ molar ratios (1:4, 1:8 and 1:16) were obtained. RESULTS: The X-ray powder diffractograms of all the samples displayed the typical peaks of a crystalline material (tetragonal phase). Emission bands emerged in the blue, red, and near infrared regions, and they corresponded to the Tm3+1G4 → 3H6 (475 nm), 1G4 → 3F4 (650 nm), 3F2,3 â†’ 3H6 (690 nm), and 3H4 → 3H6 (803 nm) transitions, which indicated a two-photon absorption process. As for bio-labelling application, the results indicated that Yb3+ concentration was directly related to signal intensity. CONCLUSIONS: The intensity of positive conversion emissions depends directly on Yb3+ concentration. The bio-labelling tests pointed to the potential application of these materials. The sample containing the highest amount of Yb3+ provided better results and was easier to detect than the standard sample.


Subject(s)
Hemoglobins/chemistry , Lanthanum/chemistry , Nanoparticles/chemistry , Niobium/chemistry , Oxides/chemistry , Thulium/chemistry , Ytterbium/chemistry , Fluorescence , Humans , Luminescence
SELECTION OF CITATIONS
SEARCH DETAIL