Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(13): 2127-2136, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36822966

ABSTRACT

A promising strategy for cocaine addiction treatment is the anti-drug vaccine. These vaccines induce the production of anticocaine antibodies, capable of linking to cocaine, and decrease the passage of cocaine throughout the blood-brain barrier, decreasing drug activity in the brain. Our research group developed a new vaccine candidate, the UFMG-V4N2, to treat cocaine use disorders (CUD) using an innovative carrier based on calixarenes. This study assessed the safety and immunogenicity of the anti-cocaine vaccine UFMG-VAC-V4N2 in a non-human primate toxicity study using single and multiple vaccine doses. The UFMG-VAC-V4N2 yielded only mild effects in the injection site and did not influence the general health, feeding behavior, or hematological, renal, hepatic, or metabolic parameters in the vaccinated marmosets. The anti-cocaine vaccine UFMG-VAC-V4N2 presented a favorable safety profile and induced the expected immune response in a non-human primate model of Callithrix penicillata. This preclinical UFMG-VAC-V4N2 study responds to the criteria required by international regulatory agencies contributing to future anticocaine clinical trials of this anti-cocaine vaccine.


Subject(s)
Cocaine-Related Disorders , Cocaine , Vaccines , Animals , Antibodies , Cocaine/adverse effects , Cocaine-Related Disorders/therapy , Immunogenicity, Vaccine , Primates
2.
Eur J Pharmacol ; 938: 175409, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36436591

ABSTRACT

Hydrogen sulfide (H2S) is a gaseous mediator that modulates several physiological and pathological processes. Phthalimide analogues, substances that have the phthalimide ring in the structure, belong to the group of thalidomide analogues. Both H2S donors and phthalimide analogues exhibit activities in models of inflammation and pain. As molecular hybridization is an important strategy aiming to develop drugs with a better pharmacological profile, in the present study we synthesized a novel H2S-releasing phthalimide hybrid, 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione (PTD-H2S), and evaluated its activity in models of inflammatory pain in mice. Per os (p.o.) administration of PTD-H2S (125 or 250 mg/kg) reduced mechanical allodynia induced by carrageenan and lipopolysaccharide. Intraperitoneal (i.p.) administration of PTD-H2S (25 mg/kg), but not equimolar doses of its precursors 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (14.2 mg/kg) and 2-phthalimidethanol (12 mg/kg), reduced mechanical allodynia induced by lipopolysaccharide. The antiallodynic effect induced by PTD-H2S (25 mg/kg, i.p.) was more sustained than that induced by the H2S donor NaHS (8 mg/kg, i.p.). Previous administration of hydroxocobalamin (300 mg/kg, i.p.) or glibenclamide (40 mg/kg, p.o.) attenuated PTD-H2S antiallodynic activity. In conclusion, we synthesized a novel H2S-releasing phthalimide hybrid and demonstrated its activity in models of inflammatory pain. PTD-H2S activity may be due to H2S release and activation of ATP-sensitive potassium channels. The demonstration of PTD-H2S activity in models of pain stimulates further studies aiming to evaluate H2S-releasing phthalimide hybrids as candidates for analgesic drugs.


Subject(s)
Hydrogen Sulfide , Hyperalgesia , Mice , Animals , Thiones , Isoindoles , Lipopolysaccharides , Pain/drug therapy , Phthalimides/pharmacology , Phthalimides/therapeutic use , Phthalimides/chemistry
3.
J Adv Res ; 38: 285-298, 2022 05.
Article in English | MEDLINE | ID: mdl-35572397

ABSTRACT

Introduction: Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure. Objectives: The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties. Methods: The preclinical assessment corresponded to the immunogenicity and dose-response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood-brain-barrier (BBB), modifying its biodistribution was also investigated. Results: Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model. Conclusion: The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.


Subject(s)
Calixarenes , Cocaine , Vaccines , Animals , Calixarenes/chemistry , Calixarenes/pharmacology , Haptens , Tissue Distribution
4.
Recent Pat Biotechnol ; 8(1): 76-88, 2014.
Article in English | MEDLINE | ID: mdl-24354526

ABSTRACT

Nature is an irrefutable source of inspiration for the modern man in many aspects. The observation and understanding of nature have allowed the development of new materials, new sources of energies, new drugs etc. Specifically, natural products provide a great contribution to the development of new agents for the treatment of infections and antitumor agents. However, obtaining natural products directly from animals, fungi, bacteria, plants etc has been considered not enough to attend the high demand by pharmaceutical industries. In this regard, various strategies based on biotechnological processes or synthetic approaches have been developed. In this scenario the total synthesis can be undoubtedly a useful and powerful tool for obtaining higher amounts of natural products and/or structural modifications thereof. Herein, we emphasize successful examples of total synthesis of galanthamine, morphine, paclitaxel and podophyllotoxin - natural products approved as pharmaceuticals.


Subject(s)
Biological Products/metabolism , Pharmaceutical Preparations/chemical synthesis , Biological Products/chemistry , Galantamine/chemical synthesis , Galantamine/chemistry , Morphine/chemical synthesis , Morphine/chemistry , Paclitaxel/chemical synthesis , Paclitaxel/chemistry , Pharmaceutical Preparations/chemistry , Podophyllotoxin/chemical synthesis , Podophyllotoxin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...