Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 39(4): 589-609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38351421

ABSTRACT

This study aimed to investigate the action of two different formulations of curcumin (Cur)-loaded nanocapsules (Nc) (Eudragit [EUD] and poly (ɛ-caprolactone) [PCL]) in an amnesia mice model. We also investigated the formulations' effects on scopolamine-induced (SCO) depressive- and anxiety-like comorbidities, the cholinergic system, oxidative parameters, and inflammatory markers. Male Swiss mice were randomly divided into five groups (n = 8): group I (control), group II (Cur PCL Nc 10 mg/kg), group III (Cur EUD Nc 10 mg/kg), group IV (free Cur 10 mg/kg), and group V (SCO). Treatments with Nc or Cur (free) were performed daily or on alternate days. After 30 min of treatment, the animals received the SCO and were subjected to behavioral tests 30 min later (Barnes maze, open-field, object recognition, elevated plus maze, tail suspension tests, and step-down inhibitory avoidance tasks). The animals were then euthanized and tissue was removed for biochemical assays. Our results demonstrated that Cur treatment (Nc or free) protected against SCO-induced amnesia and depressive-like behavior. The ex vivo assays revealed lower acetylcholinesterase (AChE) and catalase (CAT) activity, reduced thiobarbituric species (TBARS), reactive species (RS), and non-protein thiols (NSPH) levels, and reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) expression. The treatments did not change hepatic markers in the plasma of mice. After treatments on alternate days, Cur Nc had a more significant effect than the free Cur protocol, implying that Cur may have prolonged action in Nc. This finding supports the concept that it is possible to achieve beneficial effects in nanoformulations, and treatment on alternate days differs from the free Cur protocol regarding anti-amnesic effects in mice.


Subject(s)
Amnesia , Curcumin , Disease Models, Animal , Nanocapsules , Animals , Curcumin/pharmacology , Curcumin/administration & dosage , Curcumin/therapeutic use , Mice , Male , Amnesia/drug therapy , Amnesia/chemically induced , Oxidative Stress/drug effects , Scopolamine
2.
Pharmacol Rep ; 74(1): 135-147, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34739705

ABSTRACT

BACKGROUND: Surface functionalization enhances the properties and characteristics of polymeric nanocapsules (NCs) mainly due to the surface charge, surfactants, and polymer coating type. Curcumin (CUR) is a bioactive compound with several proven pharmacological properties and low bioavailability. This study aimed to develop anionic (poly-ɛ-caprolactone; PCL) and cationic (Eudragit® RS100 (EUD)) NCs prepared with sorbitan monostearate (Span 60®) or sorbitan monooleate (Span 80®), coated with d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and optimized using 23 factorial analysis. Subsequently, the biological activity was evaluated. METHODS: A two-level, three-factor design (polymer, Span type, and TPGS concentration) was used. The biological effects of CUR-loaded TPGS-coated cationic and anionic NCs were assessed in apomorphine-induced stereotyped behavior in rats. RESULTS: The type of polymer (anionic or cationic) and Span® had a factorial influence on the physical and chemical characteristics of NCs according to the changes in TPGS concentrations. Both cationic and anionic CUR-NCs could block apomorphine-induced behavioral changes. CONCLUSIONS: The CUR-loaded TPGS-coated NCs proved to be a promising brain delivery system.


Subject(s)
Apomorphine/pharmacology , Behavior, Animal/drug effects , Curcumin/pharmacology , Nanocapsules/chemistry , Stereotyped Behavior/drug effects , Animals , Dopamine Agonists/pharmacology , Enzyme Inhibitors , Hexoses/pharmacology , Plants, Medicinal , Rats , Treatment Outcome , Vitamin E/pharmacology
3.
J Neuroimmunol ; 345: 577270, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32480241

ABSTRACT

The purpose of current study was to evaluate the effect of curcumin (CUR) loaded lipid-core nanocapsules (CUR-LNC) treatment on neuroinflammatory and behavioral alterations in a model of sickness behavior induced by lipopolysaccharide (LPS) in rats. Rats were treated with CUR-LNC and CUR daily for 14 days. After the last treatments, sickness behavior was induced with LPS. Sickness behavior LPS-induced was confirmed by behavioral tests, an increase in levels of proinflammatory cytokines, decrease in levels of IL-10, overexpression of IDO-1 and IDO-2. In conclusion, CUR-LNC treatment attenuated the neuroinflammatory and behavioral changes caused in sickness behavior model.


Subject(s)
Curcumin/administration & dosage , Illness Behavior/physiology , Inflammation Mediators/immunology , Lipopolysaccharides/toxicity , Locomotion/physiology , Nanocapsules/administration & dosage , Animals , Drug Carriers/administration & dosage , Illness Behavior/drug effects , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Lipids , Locomotion/drug effects , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...