Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 59(12): 4673-4684, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36276533

ABSTRACT

Seed and peel flours of organic Bordeaux grapes (Vitis labrusca L.), containing phenolics and antioxidant capacity, influenced both the composition and properties of a yogurt. The total phenolic content (TPC) of the yogurts containing 3% of grape seed flour (GSFY) and 3% of the mixture of flours (MFY, containing 50% of seed and 50% of peel grape flours, w/w) were 18.800 ± 1.060 and 19.509 ± 1.216 mg/g of gallic acid equivalents (GAE), respectively, significantly higher than the content of the control formulation (CY, 3.199 ± 0.326 mg GAE/g). The GSFY, MFY and CY exhibited an antioxidant capacity (mean values), respectively, of 0.6100, 0.7833 and zero µmol TEAC/g by the FRAP method; and 3.6658, 2.9217 and 0.2468 µmol TEAC/g by the ABTS method. The yogurts presented typical coloration of each flour and the texture of the yogurts did not vary significantly compared to the CY. Principal Component Analysis (PCA) results distinguished the yogurts containing the grape flours and the control sample, regarding their composition and properties. The grape bioresidues were valorized by obtaining a functional and clean label yogurt.

2.
J Sci Food Agric ; 101(14): 5938-5947, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33840131

ABSTRACT

BACKGROUND: The combination of near-infrared (NIR) spectroscopy and chemometrics can be used to group or discriminate soils based on spectral response. In this study, we conducted discrimination and classification analyses on soils managed with different sources of fertilization and plant species grown in organic and conventional farming systems. RESULTS: Principal component analysis explained 96% (PC1) and 3% (PC2) of the data variability and separated the soil samples of organic and conventional management systems. The wavenumbers that contributed most to the separation of the management systems were in the range of 3600 and 7300 cm-1 , especially the absorption peaks of 3700 and 4600 cm-1 (characteristic of CH and NH combinations), and 5200 and 7000 cm-1 (typical of OH combinations). Machine learning analysis using k-nearest neighbor and random forest algorithms was efficient in classifying soil samples according to management system with an accuracy of 97.8% and can therefore be used for future classification studies. CONCLUSION: Based on the results, we strongly recommend the use of NIR spectroscopy associated with chemometrics for discriminating soils grown with Malus domestica, Musa spp., Oryza sativa and Solanum tuberosum L. under organic and conventional management systems through spectral response. © 2021 Society of Chemical Industry.


Subject(s)
Fertilizers/analysis , Soil/chemistry , Spectroscopy, Near-Infrared/methods , Agriculture , Algorithms , Crops, Agricultural/growth & development , Discriminant Analysis , Principal Component Analysis
3.
Animals (Basel) ; 4(3): 463-75, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-26480318

ABSTRACT

Pasture-based dairy production has been a major source of income for most family farms in the south of Brazil. Increasing milk prices have spurred an increase in grain supplementation, which has been poorly implemented, resulting in low levels of efficiency. To evaluate the consequences of supplementation on milk production and composition, grazing behavior and economic return, the widely used grain management system (CC-commercial concentrate, containing 21% CP, offered at 1 kg per 3.7 L of milk) was compared with an energy supplement (GC-ground corn, with 9.5% CP, offered at 0.4% of live weight). Ten Holstein cows were paired into two groups, and subjected to the two treatments in a crossover design. The cows remained in the same grazing group, and the grain supplement was offered individually at milking time and consumed completely. Each experimental period lasted 14 days, with 10 days for diet adaptation and four days for data collection; individual milk production and samples were collected to determine levels of fat, protein, lactose, carotenoids, vitamin A and N-urea. Grazing behavior was observed (scans every 5 min) in the first 4 h after the morning milking, and chemical composition of hand plucked samples of forage were measured. The cost of the supplement and profitability per treatment were calculated. Cows supplemented with GC consumed herbage with higher crude protein (CP: 16.23 vs. 14.62%; p < 0.05), had higher biting rate (44.21 vs. 39.54 bites/min; p < 0.03) and grazing time (22.20 vs. 20.55 scans; p < 0.05) than when receiving CC. There were no differences in milk composition between treatments (p > 0.05). However, higher concentrations of ß-carotene and total carotenoids were detected in the milk of cows at 70-164 days of lactation, compared to <70 days of lactation (p < 0.05). Milk production was higher (13.19 vs. 11.59 kg/day; p < 0.05) when cows consumed CC, but resulted in lower profitability compared to GC (US$ 4.39 vs. US$ 4.83/cow per day). Our results show that higher productivity does not necessarily improve profitability. Cows receiving supplement with lower levels of protein were able to adjust their grazing behavior to meet their protein needs and this level of diet modification did not alter milk composition.

4.
Br J Nutr ; 109(3): 433-40, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-22717302

ABSTRACT

Ruminal microbiota plays an important role in the conversion of plant lignans into mammalian lignans. The main mammalian lignan present in the milk of dairy cows fed flax products is enterolactone (EL). The objectives of the present study were to investigate the effects of abomasal infusion of flax oil on the metabolism of flax lignans and concentrations of EL in biological fluids of dairy cows. A total of six rumen-cannulated dairy cows were assigned within a 2 × 3 factorial arrangement of six treatments utilising flax hulls (0 and 15·9 % of DM) and abomasal infusion of flax oil (0, 250 and 500 g/d). There were six periods of 21 d each. Samples were collected during the last 7 d of each period and subjected to chemical analysis. Flax hull supplementation increased concentrations of EL in ruminal fluid, plasma, urine and milk, while flax oil infusion had no effect. Post-feeding, ß-glucuronidase activity in the ruminal fluid of cows infused with 250 g flax oil was significantly lower for cows fed hulls than for those fed the control diet. The present study demonstrated that the presence of a rich source of n-3 fatty acids such as flax oil in the small intestine does not interfere with the absorption of the mammalian lignan EL and that lower ruminal ß-glucuronidase activity had no effect on the conversion of flax lignans into EL in the rumen of dairy cows.


Subject(s)
4-Butyrolactone/analogs & derivatives , Abomasum/metabolism , Bacterial Proteins/metabolism , Glucuronidase/metabolism , Intestinal Absorption , Lignans/metabolism , Linseed Oil/adverse effects , Milk/chemistry , 4-Butyrolactone/analysis , 4-Butyrolactone/blood , 4-Butyrolactone/metabolism , 4-Butyrolactone/urine , Abomasum/microbiology , Animals , Animals, Inbred Strains , Bacterial Proteins/antagonists & inhibitors , Catheters, Indwelling , Cattle , Dairying , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/adverse effects , Fatty Acids, Omega-3/metabolism , Feces/chemistry , Feces/enzymology , Female , Flax/chemistry , Gastrointestinal Contents/chemistry , Glucuronidase/antagonists & inhibitors , Lignans/administration & dosage , Lignans/adverse effects , Lignans/analysis , Lignans/blood , Lignans/urine , Linseed Oil/administration & dosage , Linseed Oil/metabolism , Plant Epidermis/adverse effects , Plant Epidermis/chemistry , Quebec , Rumen/metabolism , Rumen/microbiology , Seeds/chemistry
5.
J Dairy Res ; 78(4): 391-5, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21910943

ABSTRACT

Flaxseed hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids but there is little information on digestibility of its nutrients by dairy cows. Four rumen-cannulated multiparous Holstein cows averaging 665 ± 21 kg of body weight and 190 ± 5 d in milk at the beginning of the experiment were assigned to a 4 × 4 Latin square design with four 28-d experimental periods to determine the effects of feeding monensin and flaxseed hulls on total tract apparent digestibility of nutrients and fatty acids. The four treatments were: (1) diet CO: control with neither flaxseed hulls nor monensin added; (2) diet FH containing 19·8 g flaxseed hulls/100 g dry matter (DM); (3) diet MO with 16 mg monensin/kg DM; (4) diet HM containing 19·8 g flaxseed hulls/100 g DM and 16 mg monensin/kg DM. Diets provided similar amounts of protein and net energy of lactation. Digestibility of crude protein was higher for diets containing flaxseed hulls and for diets supplemented with monensin. Flaxseed hulls supplementation decreased digestibility of acid and neutral detergent fibre. Significantly higher digestibility of ether extract and individual fatty acids was observed for treatments with flaxseed hulls compared with treatments without flaxseed hulls. A combination of flaxseed hulls and monensin did not result in better fatty acid digestibility than when feeding only flaxseed hulls.


Subject(s)
Cattle/metabolism , Digestion , Fatty Acids/metabolism , Flax , Lactation , Monensin/administration & dosage , Animals , Diet/veterinary , Dietary Fiber/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Dietary Supplements , Female , Nitrogen/metabolism
6.
J Dairy Res ; 78(3): 293-300, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21774854

ABSTRACT

Flax hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on digestion of flax hull based diets and nutritive value of flax hull for dairy production. Flax oil is rich in α-linolenic acid (LNA) and rumen bypass of flax oil contributes to increase n-3 FA proportions in milk. Therefore, the main objective of the experiment was to determine the effects of abomasal infusion of increasing amounts of flax oil on apparent digestibility, dry matter (DM) intake, milk production, milk composition, and milk FA profile with emphasis on the proportion of LNA when cows were supplemented or not with another source of LNA such as flax hull. Six multiparous Holstein cows averaging 650±36 kg body weight and 95±20 d in milk were assigned to a 6×6 Latin square design (21-d experimental periods) with a 2×3 factorial arrangement of treatments. Treatments were: 1) control, neither flax hull nor flax oil (CON), 2) diet containing (DM basis) 15·9% flaxseed hull (FHU); 3) CON with abomasal infusion of 250 g/d flax oil; 4) CON with abomasal infusion of 500 g/d flax oil; 5) FHU with abomasal infusion of 250 g/d flax oil; 6) FHU with abomasal infusion of 500 g/d flax oil. Infusion of flax oil in the abomasum resulted in a more pronounce decrease in DM intake for cows fed the CON diets than for those fed the FHU diets. Abomasal infusion of flax oil had little effect on digestibility and FHU supplementation increased digestibility of DM and crude protein. Milk yield was not changed by abomasal infusion of flax oil where it was decreased with FHU supplementation. Cows fed FHU had higher proportions of 18:0, cis9-18:1, trans dienes, trans monoenes and total trans in milk fat than those fed CON. Proportion of LNA was similar in milk fat of cows infused with 250 and 500 g/d flax oil in the abomasum. Independently of the basal diet, abomasal infusion of flax oil resulted in the lowest n-6:n-3 FA ratio in milk fat, suggesting that the most important factor for modification of milk FA profile was the amount of n-3 FA bypassing the rumen and not the amount of flax hull fed to dairy cows. Moreover, these data suggest that there is no advantage to supply more than 250 g/d of flax oil in the abomasum to increase the proportion of LNA in milk fat.


Subject(s)
Animal Feed/analysis , Digestion/drug effects , Fatty Acids/analysis , Linseed Oil/pharmacology , Milk/chemistry , Abomasum/drug effects , Animal Nutritional Physiological Phenomena , Animals , Cattle , Diet/veterinary , Female , Flax , Lactation/drug effects , Linseed Oil/administration & dosage
7.
J Dairy Res ; 78(1): 56-62, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21126386

ABSTRACT

Flaxseed hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on its value for dairy production. Monensin supplementation is known to modify biohydrogenation of FA by rumen microbes. Therefore, the main objective of the experiment was to determine the effect of feeding a combination of monensin and flaxseed hulls on ruminal fermentation characteristics and FA profile of ruminal fluid and milk. Four ruminally fistulated multiparous Holstein cows averaging 665 ± 21 kg body weight and 190 ± 5 d in milk were assigned to a 4×4 Latin square design (28-d experimental periods) with a 2×2 factorial arrangement of treatments. Treatments were: 1) control, neither flaxseed hulls nor monensin; 2) diet containing (dry matter basis) 19·8% flaxseed hulls; 3) diet with monensin (16 mg/kg dry matter); 4) diet containing 19·8% (dry matter basis) flaxseed hulls and 16 mg monensin/kg. Flaxseed hull supplementation decreased the acetate to propionate ratio in ruminal fluid and monensin had no effect. Concentrations of trans-18:1 isomers (trans9,trans11,trans13/14+6/8) and cis9,12,15-18:3 in ruminal fluid and milk fat were higher and those of cis9,12-18:2 in milk fat tended (P=0·07) to be higher for cows supplemented with flaxseed hulls than for cows fed no flaxseed hulls. Monensin had little effect on milk fatty acid profile. A combination of flaxseed hulls and monensin did not result in better milk fatty acid profile than when feeding only flaxseed hulls.


Subject(s)
Cattle/metabolism , Fatty Acids/analysis , Fermentation , Flax , Monensin/administration & dosage , Rumen/metabolism , Ammonia/analysis , Animals , Body Fluids/chemistry , Diet , Fatty Acids, Volatile/analysis , Female , Hydrogen-Ion Concentration , Milk/chemistry , Rumen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...