Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Genet Biol ; 157: 103624, 2021 12.
Article in English | MEDLINE | ID: mdl-34536506

ABSTRACT

The yeast Spathaspora passalidarum is able to produce ethanol from D-xylose and D-glucose. However, it is not clear how xylose metabolism is affected by D-glucose when both sugars are available in the culture medium. The aims of this work were to evaluate the influence of D-glucose on D-xylose consumption, ethanol production, gene expression, and the activity of key xylose-metabolism enzymes under both aerobic and oxygen-limited conditions. Ethanol yields and productivities were increased in culture media containing D-xylose as the sole carbon source or a mixture of D-xylose and D-glucose. S. passalidarum preferentially consumed D-glucose in the co-fermentations, which is consistent with the reduction in expression of genes encoding the key xylose-metabolism enzymes. In the presence of D-glucose, the specific activities of xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) were lower. Interestingly, in accordance with other studies, the presence of 2-deoxyglucose (2DG) did not inhibit the growth of S. passalidarum in culture medium containing D-xylose as the sole carbon source. This indicates that a non-canonical repression pathway is acting in S. passalidarum. In conclusion, the results suggest that D-glucose inhibits D-xylose consumption and prevents the D-xylose-mediated induction of the genes encoding XR, XDH, and XK.


Subject(s)
Saccharomycetales , Xylose , Glucose , Saccharomyces cerevisiae
2.
Antonie Van Leeuwenhoek ; 112(2): 211-223, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30132191

ABSTRACT

The pattern of glucose repression in most Kluyveromyces marxianus strains does not correlate with fermentative behaviour; however, glucose repression and fermentative metabolism appear to be linked to the kinetics of sugar uptake. In this work, we show that lactose transport in K. marxianus CCT 7735 by lactose-grown cells is mediated by a low-affinity H+-sugar symporter. This system is glucose repressed and able to transport galactose with low affinity. We also observed the activity of a distinct lactose transporter in response to raffinose. Regarding glucose uptake, specificities of at least three low-affinity systems rely on the carbon source available in a given growth medium. Interestingly, it was observed only one high-affinity system is able to transport both glucose and galactose. We also showed that K. marxianus CCT 7735 regulates the expression of sugar transport systems in response to glucose availability.


Subject(s)
Kluyveromyces/metabolism , Biological Transport , Culture Media/chemistry , Culture Media/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Galactose/metabolism , Glucose/metabolism , Kinetics , Kluyveromyces/chemistry , Kluyveromyces/genetics , Lactose/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism
3.
Front Genet ; 9: 94, 2018.
Article in English | MEDLINE | ID: mdl-29619042

ABSTRACT

Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype.

4.
Biotechnol Prog ; 28(6): 1419-25, 2012.
Article in English | MEDLINE | ID: mdl-22915495

ABSTRACT

Streptavidin is widely used as an analytical tool and affinity tag together with biotinylated surfaces or molecules. We report for the first time a simple strategy that yields high biomass of a Pichia pastoris strain containing a methanol induced core streptavidin (cStp) gene. Three factors were evaluated for biomass production: glycerol concentration, aeration, and feed flow rates in a bioreactor. Recycling of recombinant cells, either free or immobilized, was investigated during induction. Concentration of 2.0 M glycerol, feeding flow rate of 0.11 mL min(-1) , and aeration by air injection dispersed with a porous stone combined with agitation at 500 rpm were the set of conditions resulting into maximum biomass yield (150 g L(-1) ). These parameters yielded 4.0 g L(-1) of cStp, after 96 h of induction. Recombinant biomass was recycled twice before being discarded, which can reduce production costs and simplify the process. Immobilized P. pastoris biomass produced 2.94 and 1.70 g L(-1) of cStp in the first and second induction cycle, respectively. Immobilization and recycling of recombinant P. pastoris biomass opens new possibilities as a potential strategy to improve volumetric productivity for heterologous protein expression.


Subject(s)
Bioreactors/microbiology , Biotechnology/methods , Pichia/genetics , Pichia/metabolism , Streptavidin/biosynthesis , Streptavidin/genetics , Biomass , Cells, Immobilized , Cloning, Molecular/methods , Glycerol/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Streptavidin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...